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Introduction
The model of an inductive sensor for determining position is simulated in this paper. First the conductor 
element method [1] for any positioned finite conductor is expanded for these calculations. With this 
approach complex circuit structures union could be decomposed into polygons. A specific sensor model 
is considered, for simulations. In this model the mutual inductance is given as a function of the position of 
the transmitter coil. In a second step, the position of the transmitter coil is calculated by the mutual 
inductance. The position of the transmitter coil, is calculated from the mutual inductance outgoing from a 
firmly arranged system of receipt coils. Thus a reasonable inductive position sensor which can be 
simulated on the basis of this paper realised.
Calculation of the mutual inductance
The mutual inductance of two conductor loops C1 and C2 can be given in general with (1).
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If the conductor loops are approximated by polygon trains, the circulation integral (1) is disassembled 
into a limited number of computable integrals. In this case the mutual inductance results in (2):
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m: pieces of conductor loop C1/ n: pieces of conductor loop C2

Equation (3) is valid for the mutual inductance of two limited conductor pieces as per figure 1.
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Function Rnm(x,t) from (3) is the distance of the straight lines x and t on where both conductor pieces lie. 
In this case the integration borders x1, t1, x2 and t2 result from the beginning and the end of the conductor 
pieces (fig. 1). The mutual inductance between two parallel conductors is the easiest way for the solution 
of the equation (3).

figure 1: Arrangement of parallel conductors
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In case of both conductor pieces running in parallel distance function is as follows(4):
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The analytic solution for the mutual inductance between two parallel conductors is given in [1] with (5).
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For calculation of the mutual inductance of two, limited and twisted partial conductors it is supposed that 
both straight lines bearing the conductor pieces are in parallel levels to each other (fig. 2.). The 
connection of both straight lines who lie orthogonal to both levels is defined as a z-axis. Both direction 
vectors of the straight lines are the x- and y-axis of the coordinate system. The dot product of both 

direction vectors is used for the determination of the angle δ between both straight lines.

figure 2: Arrangement of twisted conductors

Value b is the distance between both parallel levels in which the conductor pieces lie. This leads to di-
stance function (6) of the twisted conductor pieces :
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Distance function (6) for Rnm delivers the mutual inductance delivers for twisted conductors (7).
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The following substitutions are used:
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The sign of the summation term of the equation of the mutual inductance (7) can be determined by 
solving the substitution variable zuv to the border of the double integral acts (6). This conversion of the 
root function delivers two solutions for border acts. The sign of the summation term in equation (7) is 
therefore, the sign of the root, corresponding with both borders.
Arbitrarily oriented conductors can be transferred by means of a coordinate transformation arranged 
similar to figure 2, as the relative position of the conductor pieces does not change.
Sensor model

The model of the sensor arrangement is shown in figure 3. It includes a square transmitter coil(red), a 
square receiver coil(blue) and two equilateral, triangular receiver coil pairs placed opposite to each other. 
For this conductor loops with one turn are used. The transmitter coil is fed with a sine-ware alternating 
current which induces an alternating voltage in the receiver coil.

figure 3: Sensor model

The reactance forms the proportionality factor between the alternating current  in the transmitter coil and 
the voltage induced in the receiver coils. The triangular receiver coil pairs are connected as difference 
coils. This leads on the one hand to a linearity of the measured voltage from the receiver coils and, on the 
other hand, to measuring values ranging around the zero point. 
The receiver coil pair 2 and 3 are summarised in difference coil M1. The receiver coils 4 and 5 are 
accordingly called difference coil M2.
Solutions

The simulation shows the values the mutual inductance (7) in dependence of the position of the 
transmitter. First the mutual inductance is shown in dependence of the movement in x-y-direction of the 
sensitive coil pairs. Conductor loops 2 and 3 are used as an x-sensitive sensor and conductor loop 4 and 
5 as an y-sensitive sensor
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figure 4: Mutual inductance of the sensor arrangement for a movement in x-direction (left) and a   
 movement in y-direction (right)

The mutual inductance of receiver coil 1 shows a strong dependence on the x-y-movement of the 
transmitter coil (fig. 5).

figure 5: Mutual inductance of the sensor arrangement for a displacement in z-direction with 
displacement in x-y-direction

figure 6: mutual inductance of the sensor arrangement for a rotation around the z axis (left) 
and one around itself (right)

Figure 6 (left) shows the mutual inductances M1 and M2 with the rotation of the transmitter around the z-
axis if the transmitter coil has an inclination angle of two degrees compared with its normal position. Both 
curves are shifted by 90 ° which can be explaned by the coil positions.
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Figure 6 (rigth) shows the mutual inductances M1 and M2 if the transmitter coil rotates around itself, after 
shifting 10 mm in both x- and y-direction.
In order to calculate the x-y-movement from the calculated mutual inductances of two arranged as 
difference coils each sensors (receiver coil 2 and 3 and receiver coil 4 and 5 (fig.3)), a function of the 
mutual inductance is approximated in dependence of the x-y-movement for both sensors by polynom-
interpolation. As the sensors are nearly linear in their measuring direction, it is sufficient to use a polynom 
of first order without absolute term.

1 1M (x, y) a (y) x= ⋅     (8a) 2 2M (x, y) a (x) y= ⋅ (8b)

It is possible to show these connections in a polynoun of higher order. This is very expensive and the 
inverse functions provide difficulties with case differentiations. The sensitivity is also depending on vertical 
movements. This influence on the sensitivity (for the x-movement a1 (y) and for the y-movement a2 (x)) 
includes a square dependence and, hence, can be described with a polynoun of the second order.
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The coefficients b0 and c0 show the sensitivity of the sensors without being influenced. The coefficients b1

and c1 consider changes of the measuring sizes. The influence of the measuring sizes is square and 
therefore equal for negative and positive directions. To determine the coefficients of the function of the 
mutual inductance M1 the measuring vectors are formed. The measuring value vector T1 (10a) consists of 
the x-movements, the measuring value vector T2 consists of the square y-movements in the first column 
the second column consists of coefficients(1). The corresponding is valid for the mutual inductance M2

(10b).
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The product of sensitivity a1 (y) (a2 (x)) and the measuring value vector T1 (T3) provides a vector of the 
mutual inductance M1 (M2) in dependence of the x-(y-) movement. These are overestimated equation 
systems which can be solved by means of pseudo-inverse (+) [2](11) .

1 1 1 2 3 2a (y) T M (x, y) a (x) T M (x, y)
+ +
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This procedure is also executed for all values of the influencing parameter. Resulting in the coefficient 
vectors a1 (y) and a2 (x). These form with the measuring vectors T2 and T4 also an overestimated
equation system which is solved with the method of least squares. From it follow, the coefficients b1, b0, 
c1 and c0 (12).
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The coefficients are applied in the equations of the mutual inductance (9), resulting in an equation system 
which can be solved for the movements in x- and y-direction. In comparison to the measurable size the 
size of influence owns only one low influence on the mutual inductance. Hence, it is to be neglected 
possibly the influencing of the influencing. For this the average of the sensitivity (13) of the influencing 
measuring size is formed.
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This prevents case differentiations while turning the calculation for the movement in x- and y-direction in 
dependence of the mutual inductances M1 and M2. This allows to describe the x- and y-movement in 
dependence of the mutual inductance (14).

( ) ( )
2 2

2 1 1 2
1 2 1 22 22 2

2 0 1 2 1 0 1 1

a (x) M a (y) M
x M ,M y M ,M

a (x) b b M a (y) c c M

⋅ ⋅
= =

⋅ + ⋅ ⋅ + ⋅
(14)

Many approximations are used with setting up the equation of mutual inductance, depending on the
movements in x- and y-direction. It is therefore indispensable to check these approximations carefully. 
Figure 7 shows the calculated movement as function of the mutual inductance.

figure 7: calculated displacement(14) in dependence of the x-y-displacement for x- direction (on the left) 
and y-direction (on the right)

It is obvious that the calculated values agree well with the initial values. The error caused by 
approximation is less than 3%.
Conclusion and outlook

By extending the partial conductors method it is possible to calculate the mutual inductance of
complicated conductor systems or coils. For this the conductors are fitted by the polygon trains. The 
mutual inductance is calculated between all partial conductors and all other conductors with the example 
of a position sensor the mutual inductances can be calculated as a function of the position of a transmitter 
coil and several receiver coils. This relation is reversed by means of approximation of the mutual 
inductance, thus to determine the position of the transmitter coil from the calculated mutual inductance. 
With this method divergences from linearity can be predicted as well methodical error e.g. twists of the 
sensor. Thus the introduced procedure is suitable for the optimization and interpretation of coil geometry.
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