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Introduction 
In order to assess the edibility of food, consumers 
particularly pay attention to the best-before date 
(BBD) or the use-by date [1]. While the best-before 
date declares the period of impeccable quality, the 
use-by date declares the period of safe consumption; 
however, many consumers are not aware of the dif-
ferent meaning of these two dates [1]. There is also 
no common definition in the EU which of the two dates 
is used for which products [2]; in Germany, the best-
before date is used for milk and dairy products. 
As a result, products are often precautionary dis-
carded when the best-before date is exceeded (or 
even just reached), although consumption would of-
ten be possible without concerns even after this date 
[3]. In these cases, it would make more sense to as-
sess the edibility of food, e.g., using the senses (sight, 
smell, taste); in this way, it is also possible to detect 
potential spoilage prior to the expiration of the best-
before date, e.g., due to an interrupted cold chain. 
There are several methods to investigate spoilage of 
milk. Besides microbiological methods, that often in-
clude use of a growth medium and incubation times 
(often several hours) [4] and are, thus, not suitable for 
rapid testing, spoilage of milk can be measured, e.g., 
via its pH value [5] or using infrared spectroscopy [6]. 
The use of different kinds of gas sensors or sensor 
arrays to measure gases or volatile organic com-
pounds (VOCs) which are, e.g., produced by microor-
ganisms involved in spoilage was also reported [7, 8], 
as well as investigations of actual milk spoiling over 
time using gas sensor arrays [9, 10]. Measuring mi-
crobial (by)products is closely related to the men-
tioned spoilage detection using the human nose, and 
it is supposed to be conclusive as the concentration 
of several VOCs was reported to correlate with micro-
bial counts in milk samples under various storage 
conditions [11]. 
In this work, the applicability of metal oxide semicon-
ductor (MOS) gas sensors in temperature cycled op-
eration (TCO, [12]) for reliable detection of spoilage 
of dairy products by measuring the gas space above 
the respective product (headspace) was investigated. 
Gas sensor data are combined with several reference 
data sources (GC-MS, pH value, and human sensory 

evaluation) with the aim to safely estimate the edibility 
as a potential alternative to the best-before date. 
 
Materials and Methods 
Measurement Setup 
A measurement setup developed for the automated 
measurement of stored foods [13] was adapted for 
the measurement of the headspace of dairy products 
(see Figure 1). The measurement setup consists of a 
measurement system (special version of the 
OdorCheckerSpot, 3S GmbH – Sensors, Signal Pro-
cessing, Systems, DE) including a pump and an in-
terface to a valve multiplexer, enabling automatic 
sampling from up to 32 sources individually using 
valves; these sources originally had been food stor-
age boxes in a refrigerator. The air sample is passed 
through a so-called sampling port and several gas 
sensor systems. The sampling port is an aluminum 
block with a septum. It allows drawing samples using 
an autosampler equipped with a gastight syringe and 
to analyze the composition of the air drawn through 
the setup with a gas chromatograph - mass spectrom-
eter (GC-MS; GC: Thermo Fisher Scientific Trace 
1300; MS: Thermo Fisher Scientific ISQ 7000 Single 
Quadrupole Mass Spectrometer; column: TG-624 
60 m, ID 0.25 mm, layer 1.4 µm; temperature pro-
gram; S/SL injector; headspace injection). The GC-
MS was introduced in order to draw conclusions on 
relevant substances in the food headspace and to ob-
tain reference data for the subsequent gas sensor 
data evaluation. The additional MOS gas sensors dis-
played above the GC-MS in Figure 1 serve as alter-
native GC sensors [14] and are not discussed further 
within this work. The sensors used include various 
digital and analog temperature cycled MOS gas sen-
sors, two electrochemical (EC) cells plus a photoa-
coustic carbon dioxide (CO2) sensor (SCD41, Sensi-
rion AG, CH). The temperature cycle of the MOS sen-
sors lasts one minute and consists of five high tem-
perature phases of 400 °C (duration 5 s each), fol-
lowed by low temperature phases at 150, 200, 250, 
300, and 350 °C (12 s each). The following MOS sen-
sors were used: SGP30 (Sensirion), BME688 (Bosch 
Sensortec GmbH, DE), ZMOD4450 (Renesas Elec-
tronics Corporation, JP) as well as various analog 
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sensors manufactured by UST (UST Umweltsen-
sortechnik GmbH, DE). The EC cells were two B-se-
ries sensors for hydrogen sulfide and ammonia (H2S-
B4 and NH3-B1, respectively, both Alphasense Ltd., 
GB). The results presented are obtained with the dig-
ital gas sensors (MOS and CO2). 
In the adapted setup, a sampling chamber is used in-
stead of food storage boxes. The chamber provides a 
clean environment around the milk (or other dairy 
product) package by flushing the volume with zero air. 
The headspace of the product is accessed using a tip, 
similar to a cannula, made from stainless steel tube 
(see Figure 1, inset), attached to a PTFE tube. The 
tip can pierce the cap of the dairy product package, 
thus making the headspace accessible without previ-
ous dilution or contamination. To allow for pressure 
equalization during sampling, several additional very 
small holes (diameter < 1 mm) are punched into the 
package cap using a sharp tool. 
 
Measurements and Human Evaluation Approach 
Comprehensive measurement series were carried 
out with representative dairy products of different cat-
egories, including whipping cream, natural yoghurt, 
and whole milk; only the latter is discussed within this 
work. The milk chosen was pasteurized milk, i.e., ex-
plicitly not "extended shelf live" (ESL), from two man-
ufacturers (M1 and M2). Three different batches were 
purchased from manufacturer 2 (M2-B1, -B2, -B3). 
Thus, four batches were used in total. M2-B3 was 
measured in a second measurement series nine 
months after the other batches had been tested. The 
milk was stored in a refrigerator, set to 6 °C. 
One milk sample from every batch was measured 
daily with the measurement setup; in the second 
measurement series, three packages of the same 

batch (M2-B3) were sampled every day. The meas-
urement period was 26 days (M1-B1, with several 
gaps), 11 days (M2-B1), 12 days (M2-B2, with one 
gap) or 23 days (M2-B3, with two gaps) and was sup-
posed to cover enough time both before and after the 
BBD. Each previously unopened package was ac-
cessed with the clean sampling tip, the gas space 
was extracted from the package, passed over the 
sensor systems and, additionally, analyzed with the 
GC-MS. The headspace sampling time was 10 
minutes to ensure sufficient time for several gas sen-
sor cycles; the flow was set to 200 ml/min, and the 
timing of the GC-MS sampling was set in such a way 
that the sample is extracted at about the time when 
the maximum headspace concentration reaches the 
sample port (about 2 min after the valve switching). 
Each GC-MS run lasted 45 min including cooldown. 
Additionally, every milk package was assessed by hu-
man sensory evaluation with respect to appearance, 
odor and edibility. The evaluation scale was defined 
from 1 to 10, with fresh milk starting at 10; see Table 1 
for details. The evaluations were performed by un-
trained but instructed students. Whenever possible, 
several persons evaluated the same milk sample to 
reduce the effect of individual differences in percep-
tion of spoilage. 
 

Table 1: Spoilage evaluation scheme 
Scale Meaning (e.g.) 
10 normal appearance / unremarkable 

smell / edible 
6 … / just edible 
5.5 threshold edible – not edible 
5 … / just not edible 
1 completely curdled / very unpleasant 

odor / not edible 

  
Figure 1: Overview of the measurement setup including the novel sampling chamber, GC-MS, several sensor systems 
and the measurement system, which controls the internal pump and the external valve system. Inset: Cannula-like tip to 

pierce the cap of dairy product packages. 
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The pH value was measured with different kinds of 
pH indicator paper. Both universal indicator paper, 
i.e., pH 1-14 with a resolution of 1, and, in the second 
measurement series, several papers with a narrower 
measurement range (about 5-7) and a resolution of 
0.2-0.3 were used, as well as a portable electronic pH 
meter (P 5315, PeakTech GmbH, DE) with a resolu-
tion of 0.01. The ranges of the pH indicator papers 
were chosen according to literature values, stating a 
pH value of about 6.7 for fresh milk and values around 
4 after spoilage [5]. 
 
Results 
Human Evaluation, pH Value, GC-MS Results 
In all milk batches tested, spoilage was detected by 
human sensory evaluation during the measurement 
series (see Figure 2). In case of M1-B1, the ratings 
were rather unconclusive, and both M1-B1 and M2-
B2 were only measured after the BBD because of a 
delayed measurement start. M2-B1 was actually al-
ready spoiled at the start. The optical changes de-
scribed include the formation of lumps and flakes 
(curdling or coagulation). The odor was described as 
“none” or “regular milk” at the beginning and as in-
creasingly sour with ongoing spoilage; after a longer 
time of spoilage, it was also described as “stable-like”. 
All these changes led to decreasing edibility ratings. 
Overall, the evaluation was very similar regarding the 
three evaluation dimensions, thus, there was a high 
correlation between the assessment of appearance, 
smell, and edibility. Moreover, the human evaluations 
were comparable between different persons; in most 
cases, the evaluation differed by a maximum of 1, in 
a few cases by 2, on the evaluation scale (average 
standard deviation 0.27/0.37/0.27 for appearance, 
smell, edibility). When several milk packages of the 
same batch were opened on the same day in M2-B3, 
the condition evaluations were similar in the first days. 
However, from the 6th day on, which was also the 
BBD, the standard deviation between the milk pack-
ages increased to over 0.5 and up to a maximum of 

2.31/2.02/2.08 (on the evaluation scale of appear-
ance, odor, and edibility; cf. error bars in Figure 2, 
right), with the standard deviation of odor reaching 
maximum on the BBF and the standard deviation of 
perception and edibility reaching maximum 4 days af-
ter BBD, indicating differences in the spoilage (pro-
gress) of the individual packages. These differences 
decreased slightly at the end of the measurement af-
ter 12 days (6 days after BBD), indicating a finally ra-
ther similar spoilage progress, i.e., even the slightly 
more durable milk packages finally spoiled. 
The pH value did not change significantly during the 
main measurement window around the BBD. In case 
of the universal indicator paper, no changes were vis-
ible, and the measurements with the other indicator 
papers were unconclusive (both regarding differ-
ences between the indicator papers and the changes 
over time), partly due to the uncertain color readings, 
which changed only slightly. Also, the electronic pH 
meter did not indicate significant changes during the 
first 12 days (up to 6 days after the BBD; see Fig-
ure 3). Measurements added after the main measure-
ment duration, at least 13 days after the BBD, finally 
showed pH values below 6, reaching a minimum of 
5.6 17 days after the BBD (last measured pH value). 

 
Figure 3: Milk pH values (only M2-B3) measured with the 
digital pH meter. Error bars indicate the standard deviation 

between the three packages sampled each day. 
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Figure 2: Human sensory evaluations of all milk batches. Left: First measurement series (M1-B1, M2-B1, M2-B2); M2-
B1 was already spoiled at the beginning due to a delayed start. Right: Second measurement series (M2-B3); error bars 

indicate the standard deviation between the three packages sampled each day. 
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The substances produced during milk spoilage iden-
tified by GC-MS include CO2 as well as some VOCs 
(mainly acetaldehyde, acetone, butanone, and etha-
nol). However, most substances could only be identi-
fied in completely spoiled milk, or their peak area, i.e., 
their headspace concentration, did not show a con-
clusive trend over time. Only the peak area of CO2 
increased fairly systematically with time (see Fig-
ure 4). The peak area is approx. 10 times higher than 
background (zero) air for non-spoiled milk and 20 to 
100-200 times higher for spoiled milk. Note that the 
CO2 peak area of M1-B1 remained at the level of non-
spoiled milk during the whole measurement. How-
ever, high variability of the CO2 area was observed 
for both non-spoiled and spoiled milk. 
To estimate the concentration of methanol, ethanol, 
acetone, and butanone in milk, samples were spiked 
with appropriate amounts that should generate head-
space concentrations of approx. 100 ppm at 20 °C. 
Based on these tests, the concentrations of these 
VOCs even in highly spoiled milk are estimated to be 
below 10 ppm at most for ethanol, others (e.g., buta-
none) are in the range of a few hundred ppb only. 
Concentrations below these values (depending on 
the given substance) cannot be determined reliably 
by the GC-MS with the chosen injection method and 
measurement setup because the peak areas are too 
small or signal-to-noise ratios too low (below detec-
tion threshold). 
 
Gas Sensor Data Evaluation 
The gas sensor data were evaluated by means of raw 
data preprocessing (natural logarithm of the conduct-
ance), feature extraction (mean value and slope of 60 
1 s segments of the temperature cycled MOS sen-
sors; 1 min mean value of the CO2 sensor), feature 
standardization and model training, including valida-
tion and testing, using the MATLAB toolbox DAV³E 
[15]. Of the 10 minutes sampling time, only the first 
four full cycles (4 minutes) were used. Both classifi-
cation and quantification models were trained regard-
ing the assessed milk edibility. For the classification 

models, the edibility ratings were summarized into 
new groups, so that there are only four groups of ed-
ibility: original scale 1-3 = new scale D (spoiled/not 
edible), 4 and 5 = C (just not edible), 6 and 7 = B (just 
edible) and 8-10 = A (fresh/edible). If not stated oth-
erwise, 10-fold cross validation that ignores complete 
“days after BBD” (“group-based”) and 20 % holdout 
testing of complete “days after BBD” were applied, 
and both validation and testing were repeated 5 times 
(with a new split each time) to check model stability. 
For quantification, PLSR (partial least squares re-
gression) was used. In all cases, the number of PLSR 
components is 4. A model trained with only the first 
measurement series reaches RMSE (root mean 
squared error) values for training and validation of 1.2 
and 1.5, respectively (on the human evaluation 
scale); projecting data of the second measurement 
series (=M2-B3) into that model leads to an RMSE for 
testing of 4.9, and the data points lie too high (mostly 
above 10); only data points of very spoiled milk are 
projected approximately correctly. Correspondingly, if 
data of M1-B1 are projected into a model trained with 
data of manufacturer 2 only, the RMSE values are 
1.3/1.6/2.6, and the data points are projected quite 
stably at around 8-9. This means that the individual 
models do not allow generalization. If all milk data are 
taken into the training data set, the RMSE values are 
1.4/1.7/1.9, indicating that a universal model is possi-
ble, albeit with higher uncertainty. Furthermore, the 
applicability of this model to other milk samples (other 
batches or other manufacturers) is questionable. 
Additionally, recursive feature elimination (RFE, us-
ing the linear coefficients of a least squares regres-
sion to rank the features and recursively eliminate the 
least significant one; also described in [16]) was ap-
plied prior to training a PLSR model using all milk 
data, improving the model performance (see Fig-
ure 5, left). 21 features were selected, the number of 
PLSR components is 10, the RMSE values are 
1.0/1.2/1.4. 
For classification, LDA (linear discriminant analysis) 
was used with 3 discriminant functions, combined 

 
Figure 4: Left: MS peak area for CO2 during the first measurement series; empty is aligned to the time of M1-B1. Right: 

MS peak area for CO2 during the second measurement series (M2-B3). 
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with a 5 nearest neighbor classifier. Prior to the LDA, 
a PCA (principal component analysis) with 20 princi-
pal components was performed to reduce the dimen-
sionality of the feature space (which is 601) and to 
reduce the risk of overfitting. Similar as in the case of 
the PLSR models, if the second measurement series 
is projected into an LDA model trained only with data 
of the first measurement series (classification error of 
training and validation 11 % and 33 %, respectively), 
the classification error is very high (63 %). In fact, the 
new data lie separate from most training data, and 
only the last data points for very spoiled milk correctly 
approach the “spoiled milk” cluster of the training 
data. An LDA trained with all data reaches classifica-
tion errors of 17/44/49 % (see Figure 5, middle). The 
errors seem quite high, however, rather small mis-
classification rates are observed between the “edible” 
groups and the “spoiled” groups, e.g., spoiled milk is 
never wrongly classified as edible milk (see Figure 5, 
right). Only the two “just (not) edible” groups are not 
as well separated (approx. 20 % misclassification), 
which actually is to be expected, as spoilage is a con-
tinuous process and there is no distinct boundary be-
tween either of the defined states. In fact, this might 
be due to the uncertain human assessment. 
 
Discussion 
While the substances identified with GC-MS in gen-
eral are in good agreement with literature [5, 11, 17], 
the evolution of the peak area and, thus, their concen-
tration differed greatly between different manufactur-
ers, between different batches, and even between dif-
ferent packages within the same batch, especially ob-
served for CO2. The difficulties interpreting the GC-
MS results are partly caused by the fact that the con-
centrations seem to be close to or below the limit of 
detection of the setup used. Furthermore, the pH 
value did not change significantly during the spoilage 
process, only long after spoilage was clearly 

evaluated by the human perception. Both the incon-
clusive evolution of the peak areas and of the pH 
value, which also changed less than expected, might 
be attributed to differences in numbers and species 
of microorganisms contained in the individual pack-
ages (especially regarding different manufacturers), 
leading to variations in the type and concentration of 
substances produced. Moreover, the correlation of 
the human evaluations (appearance/smell/edibility) 
with the other two indicators mentioned is limited, 
which might be due to various spoilage processes oc-
curring in the milk, leading to differences in the con-
sidered measurands. E.g., if the changes observed 
by human evaluation are a result of processes that 
cannot be covered completely by the pH value and/or 
the GC-MS measurements (possibly because the 
substances involved lie below the limit of detection of 
the headspace analysis), the cause of the spoilage 
cannot be further analyzed. On the other hand, e.g., 
CO2 cannot be perceived by the human nose; pro-
cesses producing primarily CO2 are, thus, “hidden” for 
the human perception (apart from bubble formation). 
Even though CO2 is not harmful for the human body 
in the observed concentration range, it could still be a 
valuable indicator of spoilage processes, either in the 
sense of harmless microorganisms changing the ex-
pected quality of the product, e.g., during (hetero)fer-
mentation [4] or, more importantly, of other, harmful 
microorganisms. 
As a result, a correlation of the human evaluation with 
the peak areas for CO2 or various VOCs or with the 
pH value cannot really be expected; this similarly ap-
plies to the MOS gas sensor data. Thus, the human 
evaluation is still assumed to be a valid reference 
data source. 
In fact, it could be shown that the models based on 
the MOS gas sensor data are able to project the ex-
tracted features to the human evaluation, both in case 
of quantification and classification tasks. However, 
part of the model errors might be attributed to the 

 
Figure 5: Left: PLSR model of all milk data, using SVR. Middle: LDA model (first two discriminant functions (DF), of 

three in total) of all milk data; the four edibility classes build a path from fresh (A) to spoiled (D). Right: Confusion matrix 
of the LDA model, indicating good separation of the outermost classes. 
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uncertainty of the human evaluation, and, thus, fur-
ther optimization of the evaluation approach is re-
quired, e.g., by using trained people, because a 
measurement can only be as good as its calibration. 
Additionally, the transferability of the obtained models 
to other milk samples (other batch, different manufac-
turer, different kind of milk (e.g., ESL), etc.) is ex-
pected to be very limited based on the current results. 
This might be due to the broad spectrum of possible 
microorganic contaminations and, consequently, of 
possible substances produced during spoilage. 
It is worth mentioning that hydrogen (H2) is also a pos-
sible byproduct of microorganisms [4], which is nei-
ther perceivable by the human nose nor measurable 
with the GC-MS, whereas MOS gas sensors typically 
have a high sensitivity towards H2. Thus, if H2 is pro-
duced during spoilage and the corresponding signal 
is used by the MOS gas sensor models, it is not cov-
ered by any of the reference methods and only indi-
rectly via the human perception. 
 
Conclusion and Outlook 
A measurement setup and approach for monitoring 
the spoilage of milk including human perception was 
presented. Several substances could be identified 
with the GC-MS occasionally, but only the peak area 
of CO2 was found to change fairly systematically. The 
pH value changed significantly, but only in the long 
run for very spoiled milk. Human perception deter-
mined the spoilage in all cases; however, one batch 
was rather inconclusive. In general, variations in the 
GC-MS data, the perception, or the pH value, espe-
cially within the same batch, could indicate different 
initial contaminations of the individual packages and, 
thus, a different course of spoilage, leading to a rather 
difficult evaluation, especially regarding the correla-
tions to the sensor data. However, reasonable quan-
tification and classification models could be obtained. 
Likewise, restrictions could be identified, e.g., the limit 
of detection of the GC-MS and the transferability from 
trained to new milk data. In order to further verify the 
models as well as to extend them with "extended shelf 
life" milk, further measurement series are currently 
being carried out with additional batches and milk 
from other manufacturers/brands. 
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