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Introduction 
Breath analysis as a non-invasive tool has the 
potential to become a powerful tool for early detection 
and monitoring of diseases. Of great interest is the 
detection of cancer, diabetes, pulmonary diseases, 
renal dysfunction, and COPD (chronic obstructive 
pulmonary disease) [1] as well as early detection of 
sepsis and inflammation [2]. There are already some 
biomarkers identified and linked to certain diseases, 
like acetone for diabetes, hydrogen for lactose 
intolerance, or nitrous gases for asthma [3], [4]. 
However, in many cases there is not a single 
biomarker but rather changes in the concentration of 
multiple exhaled volatile organic compounds (VOCs) 
which need to be detected. For cancer detection, 
changes in VOC profiles between a test and a 
reference group have frequently been studied [5]. In 
the breath of healthy humans more than 800 different 
VOCs have been found [6] with concentrations 
ranging from several ppt (parts per trillion) up to a few 
ppm (parts per million). Table 1 summarized major 
compounds of human breath. Besides endogenous 
sources of VOCs the inhaled air also has a significant 
impact on the composition of the exhaled air [7]–[9]. 
Besides early detection of diseases, the analysis of 
exhaled air can be used for drug monitoring with the 
aim to correlate the breath concentration of the given 
drug or a metabolite to the plasma concentration [10].  
The large number of VOCs together with a wide range 
of concentrations of different target substances poses 
a serious challenge for the measurement system. 

Several techniques have been studied for breath 
analysis with analytical methods like gas 
chromatography coupled with mass spectrometry 
(GC/MS) being the gold standard due its high 
sensitivity and selectivity. For real time analysis 
Selected Ion Flow Tube MS (SIFT-MS) or Proton 
Transfer Reaction MS (PTR-MS) are used [4]. 
However, these instruments are complex, high-end 
priced and require trained personnel so that they are 
mostly used for research purposes. 
In drug monitoring, bedside, non-invasive, and ideally 
online monitoring of exhaled air could have a high 
therapeutic relevance calling for more cost-effective 
technologies.  
For the intravenous anesthetic propofol, ion mobility 
spectrometry (IMS) has been studied intensively 
[11]–[13]. A correlation of the concentration in 
exhaled air to the plasma concentration was reported 
[14] and a pharmacokinetic model was suggested to 
predict the time-delayed and exhaled concentration of 
propofol [15].  
Another promising technology are semiconductor gas 
sensors based on metal oxides (MOS). Being 
low-cost, small sized with low power consumption, 
and easy to integrate make them highly attractive for 
portable and simple to use hand-held devices [16]. 
These could also be used in non-clinical 
environments, i.e., medical practices or even at 
home.  
Besides being highly sensitive, MOS-sensors are 
non-selective. By using temperature-cycled operation 
(TCO) [17] we could show that a single MOS sensor 
is capable of quantifying single VOCs in the low 
ppb-range in a complex and varying background of 
interfering VOCs, hydrogen (H2) and carbon 
monoxide (CO), e.g. for indoor air quality applications 
[18]–[20]. Dynamic operation together with signal 
processing based on machine learning and a 
complex lab calibration with randomized gas mixtures 
are the basis to achieve a performance of MOS 
sensors which is comparable to analytics but with the 
advantage of being low-cost and offering real time 
and online monitoring.  
To demonstrate the potential of MOS sensors for drug 
monitoring, two commercially available MOS sensors, 
i.e. ZMOD4410 (indoor air sensor) and ZMOD4510 
(outdoor air sensor) from Renesas, Dresden, 

Tab. 1: Major compounds in exhaled breath. After [25], [26]. 
compound Concentration range  
Hydrogen, H2 ~ 5000 ppb 
Carbon monoxide, CO 0-6000 ppb 
Ammonia, NH3 500 – 2000 ppb 
Acetone, C3H6O 240 – 1800 ppb 
Isoprene, C5H8 12 – 500 ppb 
Ethanol, C2H5OH 30 – 1000 ppb 
Methanol, CH3OH 30 – 2000 ppb 
n-Propanol, C3H7OH 0 – 1200 ppb 
Iso-Propanol, C3H8O 0 – 250 ppb 
Hydrogen sulfide, H2S 0 – 1300 ppb 
Nitric oxide, NO 10 - 50 ppb 
Methane, CH4 2000 – 10,000 ppb 
Rel. humidity, H2O ~ 90 % @ 35 °C 
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Germany, are studied in this work for propofol 
quantification in a simulated atmosphere under lab 
conditions. 
Methods and Experimental Setup 
The sensors are characterized for propofol detection 
in two calibration measurements simulating a breath 
atmosphere. Table 2 shows the concentrations of the 
involved background substances as well as the 
concentration range of propofol. In measurement 1 
ethanol and the level of relative humidity are varied, 
whereas the concentrations of carbon monoxide and 
nitric oxide are altered in measurement 2. A custom-
made gas mixing system based on mass flow 
controllers (MFCs, MF-1 from MKS, Munich, 
Germany) was used for all measurement as 
described in [21], [22]. Background gases are 
supplied by gas cylinders whereas propofol is 
provided by a permeation oven (Dynacalibrator 150 
from VICI International, Schenkon, Switzerland). The 
oven was heated at 70 °C and flushed with 50 ml/min 
dry synthetic air. To quickly adjust the concentration, 
an injection MFC was placed downstream of the 
oven. The concentration range of propofol was 5 ppb 
to 30 ppb. Each exposure lasted for 60 min followed 
by a 120 min pause. Different propofol concentrations 
are applied in a pseudo-randomized fashion.  
Temperature cycled operation (TCO) is used to 
increase the selectivity of the sensors and boost the 
sensitivity further [23]. A generic temperature cycle 
consisting of twelve temperature steps in the range of 
100 °C to 375 °C with a duration of 7 s and a 5 s high 
temperature phase at 400 °C between each step is 
applied, cf. Fig. 1. This results in a total cycle length 
of 144 s. For control and read-out of the sensors an 
inhouse built sensor platform based on a 
microcontroller board (Teensy 4.0, Pjrc.com LLC, 
Sherwood, Oregon, USA) and communicating with 
the sensors via I2C at a sampling rate of 10 Hz is 
used. A detailed description of the hardware can be 
found elsewhere [24]. 

The sensor conductance of a temperature cycled gas 
sensor can be represented as a two-dimensional 
dataset, where one axis represents a temperature 
cycle as shown in Fig. 4 and the other dimension 
represents a so-called quasistatic sensor response 
shown in Fig. 2 (top). With the temperature cycle as 
shown in Fig. 1 and the sample rate of 10 Hz the 
dimension of that two-dimensional matrix is N×1440 
where N represents the number of recorded cycles. 
One way of visualizing the data is plotting the quasi-
static sensor response. The quasi-static sensor 
response takes one data point at the same index of 
each cycle (i.e. out of 1440) and plots these values 
over time (i.e. plotting a specific column of the data 
matrix). This results in a sensor response similar to 
constantly heated sensors where the various gas 
exposures can be observed. Since the cycle covers a 
broad temperature range, there are several quasi-
static responses, each corresponding to a specific 
temperature. 
A second way of visualizing TCO data is by selecting 
a few cycles (i.e. rows of the data matrix) out of the 
measurement where each cycle is from a different 
gas mixture. This highlights the transient behavior 
due to changes in temperature and the corresponding 
reaction to the gas mixture.  
For data evaluation each temperature cycle is divided 
into 1 s long intervals, in which the mean value and 
the slope are calculated and extracted as shape 
describing features, resulting in 288 features per 
cycle and sensor. In a second step, these features 
are standardized (z-scored) and used to train a partial 
least squares regression (PLSR) model. In order to 
determine the optimal number of PLSR components 
and to validate the model to prevent overfitting, 
group-based leave one out cross-validation (LOOCV) 
is used. Group-based means that an entire exposure 
(consisting of almost 25 observations, i.e. cycles) is 
omitted during training and only used for validation. 

Fig. 1: Used temperature cycle.  consisting of twelve high 
and low temperature phases with a total length of 144 s. 

Tab. 2: Substances and concentrations used in characteriza-
tion measurements. 

compound measurement 1 measurement 2 

H2 --- 5000 ppb 
CO --- 0, 3000, 5000 ppb 
Acetone 1000 ppb 1000 ppb 
Isoprene 200 ppb 200 ppb 
Ethanol  500 ppb, 1000 ppb 500 ppb 
Methanol 500 ppb 500 ppb 
n-Propanol 50 ppb 50 ppb 
Iso-Propanol 20 ppb 20 ppb 
H2S 20 ppb 20 ppb 
NO --- 0, 10, 25, 40 ppb 
r.h. @ 20 °C 60, 70, 80 % 80 % 
Propofol 20, 15, 25, 5, 30 

ppb 
20, 15, 25, 5, 10 

ppb 
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Results 
In a first step, the sensor responses of the 
ZMOD4410 and the ZMOD4510 to the gas profiles in 
both measurements are studied.  
After that, a PLSR model is built to quantify propofol 
independent of the background mixture. 

Quasi-static sensor response 
In a first calibration measurement the concentration 
of ethanol as one of the main interfering gases as well 
as the level of relative humidity was varied. The 

sensors are exposed to five propofol concentrations 
in a constant background of acetone, isoprene, 
methanol, 1- and 2-propanol, and hydrogen sulfide, 
cf. Tab. 2 second column and Fig. 1 lower part. The 
quasi-static sensor response at 400 °C of the 
ZMOD4410 and ZMOD4510 is given in the upper part 
of Fig. 2. Both sensors show a fast and high response 
to propofol and are not much affected by the change 
of humidity. Only the ZMOD4410 reacts to the change 
in ethanol concentration. The response of the 
ZMOD4510 seems stronger compared to the 
ZMOD4410 but the ZMOD4510 never reaches a 
steady-state condition during 60 min of propofol 

 
Fig. 2: Quasi-static sensor response of the ZMOD4410 and ZMOD4510 at 400 °C for calibration measurement 1 (top) and ap-
plied gas profile with varying level of humidity and ethanol (bottom). 
 
 

 
Fig. 3: Quasi-static sensor response of the ZMOD4410 and ZMOD4510 at 150 °C for calibration measurement 2 (top) and ap-
plied gas profile with varying level of nitric oxide and carbon monoxide (bottom). 
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exposure. Similarly, when propofol is switched off, the 
response of the ZMOD4510 drops immediately but 
never settles on a baseline during 120 min.  
The second measurement uses a similar gas profile 
but instead of ethanol and the level of relative 
humidity, carbon monoxide and nitric oxide 
concentrations were changed. Table 2 last column 
provides the concentrations of each substance. The 
propofol profile together with the variable interfering 
gases (CO and NO) is illustrated in the bottom panel 
of Fig. 3. The purpose of measurement 2 is to study 
the influence of CO and NO (CO is associated with 
smokers), on the sensor response of the two air 
quality sensors. The same sensor samples are used 
as in measurement 1. Fig. 3 shows the quasi-static 
sensor response of both sensors at 150 °C. The 
signal of the ZMOD4510 is more stable compared to 
the ZMOD4410 with prominent response to the 
different propofol concentrations. Changes in the NO 
concentration are clearly visible in both sensor 
signals. 

Dynamic sensor response 
In addition to the quasi-static sensor response which 
indicates the sensor response, time constant, 
baseline stability, and recovery time, the dynamic 
sensor response reveals the transient behavior when 
changing the temperature, in particular how the 
shape of the sensor response is altered by the gas. 
Thus, the dynamic sensor response provides first 
insights for the machine learning model since shape-
describing feature will be extracted from each 
temperature cycle which are input to train a 
regression model. Fig. 4 shows selected cycles in 
various atmospheres from both measurements. Black 
and blue cycles represent background only, i.e. 0 ppb 
propofol, with different levels of humidity, ethanol, 
nitric oxide, and carbon monoxide. In contrast, 

magenta and green cycles correspond to 25 ppb 
propofol in these different background mixtures. It can 
clearly be seen that the cycles in propofol are almost 
perfectly overlapping indicating that the background 
composition has only a minor influence. Additionally, 
when comparing the shape of the cycle with and 
without propofol, a clear difference can be observed, 
especially for the temperature range 200 °C – 300 °C. 

Building a Regression Model 
In the next step, each cycle is divided into 1 s long 
intervals, from which the mean and the slope are 
extracted as shape-describing features. These 576 
features (two sensors with two features each and 144 
feature segments/intervals) are used as input to train 
a regression model. For this, the feature data from 
both measurements are combined and split into a 
training and test set. The training set consist of all 
propofol exposures (incl. 0 ppb) from measurement 1 

 
Fig. 4: Dynamic sensor response of ZMOD4510 for various background mixtures (i.e. 0 ppb propofol) from measurement 1 and 
2 in black and blue, respectively, as well es several cycles in 25 ppb propofol from both measurements in magenta and green. 
The set temperature is given in red. 

  
Fig. 5: Performance plot of the PLSR model with group 

based LOOCV for the combined dataset of measurement 1 
and 2. 
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and only background groups, i.e. 0 ppb propofol of 
measurement 2. The test data holds only the propofol 
exposures from measurement 2 (5 ppb to 25 ppb).  
In order to find the optimal number of PLSR 
components, the performance plot in Fig. 5 is studied. 
Here, several PLSR models with different number of 
PLSR components are trained and validated using 
group-based LOOCV on the training set as well as 
using (unknown) test data. The optimal number of 
components is defined just before the validation and 
testing error increases significantly. Thus, 7 PLSR 
components are used with RMSE values for training, 
validation, and testing of 1.5 ppb, 1.9 ppb, and 
2.3 ppb respectively (cf. Fig. 5).  

Prediction of Propofol Concentrations 
A PLSR model with 7 components is trained on the 
training set (measurement 1 and only background 
groups of measurement 2), cf. Fig. 6. For testing the 
model, entire measurement 2 is used. Fig. 7 shows 
the model estimate for measurement 2 (red curve). 
The true concentration is given in blue. The prediction 
of the propofol concentration in the range of 0 ppb to 
20 ppb is accurate within the range of 2-3 ppb. The 
lower propofol concentrations (5-15 ppb) are 
overestimated whereas the highest concentration 
(25 ppb) is a bit underestimated. 

Discussion 
The results suggest that commercially available MOS 
sensors, in particular the indoor air sensor 
ZMOD4410 and the outdoor air sensor ZMOD4510, 
are suitable candidates for selective quantification of 
propofol in the relevant concentration range of 0 ppb 

to 30 ppb and varying background gases when run in 
temperature cycled operation and using an advanced 
machine learning model. Future research will address 
improvements of the operating mode and data 
evaluation as well as long-term stability. 
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