
	 The European Test and Telemetry Conference – ettc2022	 159

DOI 10.5162/ettc2022/7.1

Abstract:
This paper summarizes the data exporting methods and their evolution in the Helicopter Division in
Turkish Aerospace. Initially, we could get away with using the utilities, which are provided by FTI
System Supplier (Curtiss-Wright). These utilities helped to sustain data export process in first period of
the project. However, along with increasing data export tasks, improvements in data exporting
demands were eventually becoming inevitable. First, a utility is developed to exploit the batch process
capability of the IADS Server license (“Data Manager” tool) in a multi-tasking fashion. This custom
Data Export tool accelerated the exporting task and saved the day in the tight schedule of the T625
Project, even though it has its own substantial shortcomings namely creating a huge set of regular files
without security or redundancy and not being a searchable database. In the meantime, a novel
platform (named as “Optimus”) is being developed in-house and is now starting to gain popularity
among data clients.

Keywords: multiprocessing, multitasking, data export

Introduction
Before the T625 Project, the data export
requests were not considerable and we used to
utilize either the software suite of KAM-500
Data Acquisition System (“kFlashCard” of
“KSM-500” software suite) or the GUI interface
of the data conversion and visualization
software (“IADS” of Curtiss-Wright) for data
exporting. However, the requests in T625
Project, along with both the size of the collected
data and the number of manoeuvers and data
type combinations, forced us to look for a
solution.

We decided to take advantage of a utility in
IADS software suite, namely “IADS Data
Manager Tool”, which can be run from a
terminal to export data, without opening an
IADS Client session. A custom Data Export tool
is developed to exploit this “batch processing”
capability and run multiple data export
processes in parallel. This solution, despite
decreasing considerably the data export times,
is by no means an “ideal” data sharing solution.
It enabled us to keep up with project deadlines.
The main shortcoming is that the data is not
kept in a database through which one can
query. Being able to make a query, which
covers all flight data, is a must and can only be
addressed by a dedicated platform, our Data
Export Tool is an interim utility to accelerate

export process. Other crucial areas which are
not in the scope of our tool are data redundancy
and data security issues.

Nevertheless, the Data Export Tool relieved
time schedule pressure, enabled the
continuation of the Project and more importantly
from our point of view, increased
consciousness for the necessity of a “Data
Platform”. In the time gained, a novel data
platform (named as “Optimus”) has been under
development by the Artificial Intelligence Group.
Here we only present the Data Export Tool in
detail, as for Optimus, we provide solely a
glimpse.

In the next section, we briefly describe the FTI
System employed in T625 Project to provide an
understanding about the scale of the FTI
System which required novel solutions for data
exporting. Then we mention about the problem
faced in data exporting emerged by a flooding
growth of data volume. Next we provide details
about the developed tool which makes the most
of the batch process capabilities of “IADS Data
Manager” utility. Finally a glimpse into the
Optimus platform is provided, which is getting
popular and to which new capabilities are being
added.

Evolution of Data Exporting

Fatih HACIÖMEROĞLU1, Egemen GÜÇLÜ1, Mehmet KEKEÇ1, Raşit UZUN1
1 Helicopter Flight Test Instrumentation, Turkish Aerospace, ANKARA

	 The European Test and Telemetry Conference – ettc2022	 160

DOI 10.5162/ettc2022/7.1

FTI System in T625
The Data Acquisition System in T625
comprises 8 KAM/500 DAQ’s, 2 Ethernet
Switches, 1 Ethernet Recorder and 2 Rotating
DAQ Systems with contactless slip rings (for
rotor & blade measurements).

Figure 1 Instrumentation Architecture in T625

There are about 6000 raw parameters defined
in the FTI System, about 1000 of them are for
analog measurements (among which 150 of
them are from rotating systems). We telemeter
around 3200 out of the total 6000 raw
parameters while the on-board recording rate of
Ethernet packets is about 50 Mbps.

Raw parameters are sent from DAU’s. The
receiving side is responsible to perform the
Engineering Unit derivations.

Issues in Data Exporting
Each test, either Ground or Flight Test, contains
numerous “TestPoints” and collected data is
grouped into numerous “DataGroups”.

 “TestPoint” (or Test Operation) is the name
given to the maneouvre of interest which is
marked with a start time and an end time. In
other words it is a time slot in the whole test
duration whose start and stop times are used to
slice the data to indicate an interested section
of test. Typical examples can be given as
“Level Flight at 70 kts at 3000 ft AGL”,
“Deceleration from 70 kts to 40 kts at 3000 ft
AGL”, “Taxi 20 kts”, “Left Coordinated Turn at
70 kts at 3000 ft AGL”, etc. In addition to the
executed testpoints, we define an enclosing
TestPoint to slice all the time from beginning of
Engine Start upto end of Engine power off, the
aim of this enclosing testpoint is mark the
region for data to be used for fatigue
calculations.

“DataGroup” is the name given to the datasets
containing parameters originated from same
type of source and have same sample rate.
Some typical examples can be given as

“Pressure Parameters sampled at 256 Hz”,
“Pressure Parameters sampled at 4096 Hz”,
“Thermocouple Parameters sampled at 8 Hz”,
“RTD Parameters sampled at 8 Hz”, “Arinc-429
Messages from ADC-1 sampled at 128 Hz”,
etc. Each one is a distinct DataGroup (note that
the distinction comes both from data source
type and also from the sample rate). There are
over 100 DataGroups defined in T625 Project.

We are required to export data for each
TestPoint and DataGroup combination as
separate text file (Designers and Analyzers,
who are the data customers, prefer the
exported data to be in a text file such as “csv”
format rather than in binary format). Using
typical per flight quantities of 30 TestPoints and
100 DataGroups, it makes 3000 distinct
TestPoint-DataGroup pairs and hence 3000
files to export.

IADS software is used for real time data
monitoring during ground and flight tests. IADS
uses its own data format (with extension
“iadsData”) in order to handle the demanding
real time data processing feature. To obtain
required csv files, we have been using IADS’s
export functionality available in an IADS Client
or IADS RTStation licenses. They work great
for small scale tests but they fall short when
there are 3000 csv files to export. Since, to
export data from an IADS Client, it is required to
playback the IADS’s test session, select the
DataGroup and select the TestPoint manually.
After a data group exported for all test points,
another data group needs to be selected
manually, which necessiates a user to wait in
front on an IADS session during all the process
and use the GUI.

On the other hand, IADS’s Server Licence
provides a Data Manager Utility, with which one
does not need to re-open (playback) a test
session in IADS in order to export data. It is
only needed to provide the configuration file in
test session (the file named as “pfConfig” file)
and Data Manager can use it to export data in
desired format. What makes Data Manager
worthy in our application is that it can also be
run from command line. This batch capability
was the enabler in the creation of the custom
export tool. Our Data Export tool only needed to
form a queue of the the Data Manager
commands (one for each TestPoint and
DataGroup) and call them in parallel,
consecutively, until the exhaustion.

	 The European Test and Telemetry Conference – ettc2022	 161

DOI 10.5162/ettc2022/7.1

Custom Data Export Tool
First attempt was to write an application in
Python which opened a new thread for each
Data Export task (i.e. TestPoint-DataGroup
pair). User can select the TestPoints and
DataGroups and once exporting is started, the
program was keeping track of the threads in
order not to exhaust the CPU (obviously
starting 2500 threads at once is a sure way to
crash the operating system. Our CPU consists
of 24 cores). This first program used the low-
level thread functions of Python. For instance if
alive thread number is set to be 10, the
program would initiate first 10 threads and then
keeps monitoring their execution, as soon as
one thread finishes, the 11th export is initiated.
Keeping track of active threads was a
considerable part of the code. Each thread
used to call an “os.system()” call in Python
which creates a separate process. Therefore,
our multithread application was actually running
as a multiprocess application (Multiple threads
can be run in a single core, so that user thinks
that they are running simultaneously but in fact
there is a fast switching undergoing. On the
other hand, multiple processes are run in
different cores so that the tasks are running
simultaneously in the true meaning of the term).
The code was difficult to maintain.

As the second version, we wanted to resort to
Python’s built-in modules to handle multitasking
(instead of keeping track of alive tasks
ourselves). We chose “concurrent.futures”
module in which a “pool” is created and all the
export tasks are sent into this pool. We only
have to adjust the pool size (a.k.a worker size)
to determine how many simultaneous tasks we
want the computer to run in separate cores. Our
IADS Server computer has a 24 core
processor, we generally used 12 as pool size.
Using a high-level library such as
“concurrent.futures” leads to cleaner code. As
for the GUI, “Qt5” module is preferred (over
“tkinter” module which was used in the first
version).

The GUI has 4 toolbar buttons that have to be
run in order, which is imposed by the program
by activating and deactivating them as required.

Figure 2 The Data Exporter GUI (top)
Toolbar buttons (bottom)

STEP 1) “DirToExport” Button: First user
selects the destination directory. A confirmation
is presented in the Log area. The destination
directory can be a local folder or it can be a
folder which is in the intranet of the Company.

STEP 2) “pfconfig” Button: Then user selects
the configuration file within the folder where
IADS Session related to the test resides.

STEP 3) Export TP_DG_PDs Button:
Pressing this button issues commands to Data
Manager to export DataGroups file, TestPoints
file and ParameterDefaults file (a fancy name of
IADS used to refer to formulas (EU derivations))
to the export folder, as well as population of the
DataGroups area and TestPoints area (as in
Figure 3). User can select/deselect TestPoints
and DataGroups to narrow down the export
tasks if desired.

	 The European Test and Telemetry Conference – ettc2022	 162

DOI 10.5162/ettc2022/7.1

Figure 3 An example view after TestPoints and
DataGroups are listed (from a very short test)

STEP 4) “Export” Button: This is the final
step, where program starts running processes
in parallel.

User can determine the number of processes
that will run in parallel (i.e. number of workers).
Generally, we use 12 workers, because using
more would saturate CPU. In fact, this depends
on the export location choice, which is another
setting user can make. We named two distinct
methods for export methods.

Export Method 1) Export each file directly to
the destination folder in intranet.

Export Method 2) Export to a local temporary
folder first and at the end copy all data to the
destination folder in intranet.

For instance, if Method 1 is chosen, the copying
of the file to intranet slows down and choosing
a worker size of 12 would make the CPU to
work at 50%. (Network speed bounds the CPU
usage.) However if Method 2 is chosen, since
writing to local drive is much faster than
sending over Ethernet, the processes run faster
and CPU utilization increases to about 80%,
during the export process. Depending on the
network speed and whether or not we have
some other task to do in the Computer, user
has the flexibility to choose worker size and
export method.

During the execution, a log file is filled with
information regarding the individual export tasks
(as in Figure 4), such as the number of
parameters in the DataGroup, the TestPoint
time slot duration. There is also a metric
showing how much we gained from parallelism.
In this example, the parallel exporting process
took about 10 times less than the time it would
have taken, had all the exports been taken
consecutively (without parallelism).

Figure 4 An example Log file, providing details of each export task.

	 The European Test and Telemetry Conference – ettc2022	 163

DOI 10.5162/ettc2022/7.1

Glimpse into the New Platform
The Optimus Platform, being developed by the
Artificial Intelligence Group, saves the raw data
(pcap files) in a computational cluster (providing
built-in redundancy and security) and uses
parallel processing techniques to perform EU
conversions on the fly. Having saved only the
raw data provides substantial storage area
savings. This data storage and on-demand data
conversion platform is aimed to be equipped
with analysis functionalities.

Figure 5 Login Screen of Optimus

Besides, basic statistics (such as minimum,
maximum, average for each minute) about all
parameters are stored in a separate database
in Optimus (it is the first database (in the true
sense of the word) used for flight data). This
enables users to have a look at the data (as in
Figure 6) and also more importantly to query
flight data. This is especially worthy since the
query can span over multiple flights, i.e. search
is not limited to one flight. To illustrate, to
investigate if some parameters exceeded some
thresholds in all of the prototype flights can be
almost instantly obtained by means of Optimus.

Figure 6 Example view of search capability in
Optimus (Many flights are detected, user can plot
the parameter (along with exceedance criteria)

Conclusion
A Data Export Tool is developed to overcome
the increasing data export requests, where
conventional methods based on Supplier
utilities was getting insufficient. The created tool
makes use of the batch processing capability of
the IADS software using parallel processing
techniques provided in Python. We have
successfully used the tool in T625 Project.
Nevertheless increasing frequency of the flights
necessitated novel computer science
techniques for data storage and processing,
which led to development of a new platform.
Without the Data Export Tool, we would not be
able to meet the data expectations and we
would not have time to have Optimus
developed in parallel.

References
[1] www.xidml.org

[2] www.qt.io

[3] www.curtisswrightds.com

