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Abstract 
Predictive maintenance with machine learning is a new challenge for the automotive industry. 
Depending on the level of vehicle use and the load on components beyond predefined limits, the 
detection and elimination of systematic faults and the introduction of demand-oriented maintenance 
helps increase efficiency and reduce costs. 
With this in mind, TROUT has developed VeDAS, a self-sufficient system that can be easily adapted to 
different vehicles. It is used for the automatic acquisition of vehicle data, which is evaluated with machine 
learning. Fast and secure communication to the downstream evaluation system is ensured via mobile 
storage media or wireless communication. 
Collected data includes position, acceleration and vibration of the vehicle, as well as speed and distance 
travelled. In order to take possible environmental influences into account, temperature and humidity are 
also determined. A structure-borne sound microphone provides information about the operating status 
of the monitored vehicle. Further data provided by an engine control unit can be accessed via CAN bus 
interface. 
In addition to data acquisition, VeDAS also provides a logbook function for documenting maintenance 
activities. Maintenance intervals and deadlines are determined for all entered vehicle assemblies. The 
selected method of condition monitoring specifies maintenance intervals and ensures the availability of 
the vehicle. Expanded functions include determining when an engine oil change is due. 

Key words: machine learning, structure-borne sound microphone, vehicle data acquisition, 
predictive maintenance 

 
Fig.1 VeDAS Box 
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Structure of the Evaluation Software 
Data from the VeDAS box is transferred via USB 
connection to the evaluation software, which 
runs on a laptop computer. Tabs give access to 
the collected data and the calculation functions. 
• Vehicle data: Creation and modification 
of vehicle master data, summary of all vehicle 
data. 
• Vehicle usage profile: Evaluation of the 
data after a selectable period according to terrain 
and environmental data. 
• Graphical representation: Route of the 
vehicle, structure-borne noise, nick and gear 
rates, acceleration and speed, shock diagram. 
• Assemblies: Organization of the 
condition-monitored components 
• Settings: language, directories, export 
properties, time zone, definition of limit values 
and correction factors. 
• VeDAS data transfer: Configuration of 
data import from the VeDAS Box. 
• VIN: Vehicle-specific identification 
numbers and identifiers as well as the date for 

the last maintenance, the next maintenance and 
the last data import can be found here. 
The data is used for further training and for 
remodeling the intelligent evaluation module 
using various Machine Learning methods. 

The trained network is then made available 
within a software update to the evaluation PCs. 

Shock Diagram 
The diagram shows the number of shocks for the 
respective load range. 

The user can choose between two forms of 
visualization. The bar chart and a cumulative 
sum chart. The cumulative sum is formed 
starting from the highest g-values (here > 2g). 
The lowest value in the graph, here > 0.2 g, thus 
indicates the total number of shocks. The user 
determines in the settings from which g-limit 
value a measured value is assessed as a shock. 

If the number of shocks in a certain range (in the 
example below >2 g) exceeds the limit value, 
maintenance is required. 

The user defines the limit values for this in the 
settings.

Fig. 2 Shock Diagram, cumulative sum chart 

Acceleration and Speed 
The shocks in the chapter above are measured 
via built-in acceleration sensors. In addition, the 
accelerations for the 3-space axes can be 

displayed. The speed of the system/vehicle is 
determined via GNSS. If there is a connection to 
the vehicle CAN bus, the speed can also be 
obtained from there.  (diagram overleaf)
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Fig. 3 Acceleration and Speed 

Nick and Gear Rates 
In addition to the experienced accelerations, the 
spatial position of the system is recorded. The 

system shows the deviation from the configured 
zero position for the parameters roll, pitch and 
yaw.

 
Fig. 4 Nick and Gear Rates 

Usage Profile of Vehicle 
The evaluation module provides information 
about the usage profile of the vehicle. The terrain 
sections are calculated as well as the kilometers 

driven on the road. The temperature and 
humidity are also recorded. A velocity profile is 
presented in tabular and graphical form. 
(diagram overleaf)
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Fig. 5 Usage Profile of Vehicle 

Structure-borne Noise 
The recorded structure-borne sound [1];[2] can 
be output directly (green graph). Furthermore, 
individual frequency components can be 

displayed (yellow graph). The aim is to assign 
changes in frequency and amplitude to a defect 
in the vehicle by means of intelligent evaluation 
via Machine Learning. [3].  

 
Fig. 6 Structure-born Noise 
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Data Process Chain 
Vehicle data from the CAN bus and sensors 
connected to the VeDAS Box are written to a ring 
memory after filtering with data reduction and a 
plausibility check. The capacity of the ring 
memory includes measurement data of several 
months. 

The data can be exported from the ring memory 
to a database on a PC/laptop at any desired 
time. There, the data can be evaluated and 
visualized via a pre-installed artificial intelligence 
module. In particular, statements are made 
about maintenance work that is likely to be 
necessary and the oil quality 

 

 
Fig. 7 Process Chain 

The data is transferred to a high-performance 
computer system for further training and for 
remodeling the intelligent evaluation module 
using various Machine Learning methods. 
There, further training of the artificial neural 
networks takes place with the involvement of 
expert knowledge. The trained network is then 
made available within a software update to the 
evaluation PCs. 

In further processing, an additional software 
component can be used to establish a 
relationship between the parameters operating 
hours, engine speed, oil pressure, oil 
temperature, water temperature, oil pressure 
profile and a key figure for the oil quality for a 
specific vehicle type and a specific type of oil. 
Start is with a default parameterization. 

The procedure for calculating potentially 
required maintenance work on vehicle 
components is analogous. An evaluation of the 
measured structure-borne noise spectrum is 
also included here. The frequency range from 20 
Hz to 60 kHz is considered. 

Measuring the entire frequency range in one 
measurement would generate a very large 
amount of data, since a long period of time would 
be required to measure low frequencies. It 
therefore makes sense to carry out several 

measurements for different frequency ranges, in 
which the amount of data can still be evaluated. 

The initial configuration of the sensor consists of 
a set of three frequencies and three measuring 
intervals. (Duration of measurement TM1, TM2, 
TM3 and measurement frequency MF1, MF2, 
MF3). 

The sensor carries out the configured 
measurements in a loop: 

1. Measuring with TM1, MF1 

2. Evaluate data and send to the main processor 
for storage 

Step 1 and 2 are repeated with TM2, MF2 and 
TM3, MF3. The AI evaluation is then used to 
search for patterns of sound characteristics of 
incipient defects in vehicle parts in order to plan 
an exchange at an early stage if necessary. 

Predictive maintenance is the logical 
continuation of condition monitoring, which has 
long been integrated into many vehicles as a 
further development of the classic recording of 
operating hours. While condition monitoring only 
enables the detection of a state of wear, with 
predictive maintenance a maintenance 
appointment can ideally be scheduled well in 
advance. As a consequence, this results in 
higher availability and reduced costs. 
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Reduce of costs and increase performance 
All relevant information is available via the 
vehicle data from the CAN bus communication 
plus the data from an additional sensor box in 
order to recognize whether the vehicle is in the 
best technical condition or that there are 
imminent defects. Maintenance can then be 
planned in advance, vehicle downtimes reduced 
and breakdowns avoided. This lowers costs, 
increases performance and extends the service 
life of the vehicle. 

Especially if a special vehicle is used in 
comparatively small numbers but distributed 
worldwide, the expense of an additional sensor 
box with downstream evaluation of the 
parameters combined with the CAN bus data via 
machine learning processes pays off. Because, 
firstly, good predictive maintenance makes 
some visits by a service technician unnecessary. 
Second, the vehicle is only serviced when wear 
and tear requires it. And finally, thirdly: If a 
technician has to travel, then he knows in 
advance where the fault lies and, if necessary, 
which spare parts he needs on site. 

Predictive maintenance is particularly attractive 
in scenarios in which a small malfunction or 
intervention that is too late can cause extremely 
high damage. 

If the status data is evaluated regularly, the 
predictive maintenance system sounds an alarm 
before system failures occur. Then costly 
consequences can usually be avoided. 

Predictive maintenance thrives on the leading 
system evaluating sensor data and drawing 
conclusions about the actual wear and tear of the 
respective component and its remaining service 
life. The effect of a predictive maintenance 
model is greater, the more sensors deliver data. 
And: The more precisely the system works, the 
more precisely it can be determined when which 
component should be replaced - in good time 
before a failure, but also only when it is actually 
necessary. 

To do this, the prediction model must constantly 
adapt to the circumstances. This means that the 
measurement data collected must be interpreted 
continually, and the interpretation should 
increasingly approximate actual requirements. 

This is exactly the function of machine learning 
algorithms. With their help, functional 
relationships can be derived from the data, which 
allow a reliable diagnosis of the status of the 
monitored system and reliable forecasts. The 
first goal is therefore to predict the Remaining 
Useful Life (RUL) of vehicles and components as 
accurately as possible. The second goal is the 

already mentioned learning effect. This is 
because the algorithms not only automate 
predictive maintenance. They also deliver 
adequate results and, if necessary, 
recommendations for action if there are changes 
in the behavior of the vehicles, but also in the 
general conditions. 

On this basis, maintenance processes, intervals 
and stocking of spare parts can be optimally 
adapted to the current conditions. And the model 
helps to identify deviations before the vehicle is 
no longer fully functional or major damage 
occurs. Incidentally, this can also be used for 
lubricants and consumables. Their condition and 
wear can also be monitored and the optimal 
maintenance and replacement times can be 
derived from this. 

For a predictive maintenance project using 
machine learning, the database must first be 
examined carefully. It is good if the vehicles to 
be integrated were already equipped with 
sensors and these can be read out via log books 
and log files. 

The first step is to view and evaluate the data. 
What is particularly interesting here is which 
status or measurement data is collected from 
vehicles at specific times and since when. 
Unstructured data such as audio 
signals/structure-borne noise data can also be 
viewed and evaluated using additional sensors, 
such as those available via VeDAS. Not to forget 
static data such as the Vehicle Identification 
Number VIN, date of manufacture, supply 
number, vehicle identification, vehicle software 
kit and conversion kit. 

The next step, the processing, is crucial: the data 
records have to be cleaned up, wrong values 
deleted, missing values filled in. At the same 
time, it is important to develop an understanding 
of which data was collected, how and under what 
circumstances. 

Conclusion: Companies that pursue ambitious 
goals with predictive maintenance must 
integrate artificial intelligence or machine 
learning. Because only with AI can the value 
creation potential of predictive maintenance be 
optimally exploited. 
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