
	 The European Test and Telemetry Conference – ettc2022	 220

DOI 10.5162/ettc2022/9.4

This information is of origin Airbus Defense and Space/Spain and does not contain any export controlled information.

TABAI. Test Assistant Based on Artificial Intelligence
Francisca Coll Herrero1, Pedro Rubio Alvarez1

1 Airbus Defense and Space, Av John Lennon s/n, Madrid, Spain
Francisca.Coll@airbus.com

 Pedro.R.Rubio@airbus.com

Abstract:
An Artificial intelligence (AI) is the simulation of human intelligence processes by machines, especially computer
systems.
AI include expert systems, natural language processing, speech recognition, machine vision, pattern recognition,
etc.
Artificial intelligence has been used in Test for several years specifically in the field of Computer Vision - for example
in safe separation (store trajectory calculation), aerial delivery (paratrooper’s trajectory calculation), and refuelling
manoeuvres (approach speed calculation).
Also other projects where a prototype in which we have already developed or there is an interest in its study and
evaluation, such as: pattern recognition based on wavelets for automatic manoeuvre detection (BMAD), real time
object detection (basket detection, relative position, approach speed…), measuring pilots workload (eyes, head and
hand movement) and FTI validation (Parameters anomaly detection, bad calibrated sensors, failure prediction).
This paper will describe a project called TABAI which consists of a Test assistant based on artificial intelligence.
TABAI is an assistant like Alexa or Siri to help in the Test activities. Using TABAI it will be possible to access to all
the Test information that currently is available in a database or in documents or stored in data files.
The potential of TABAI is enormous, from obtaining the maximum value of a flight parameter to become the entry
point for many test tools.

Key words: TABAI: Test Assistant Based on AI, Chatbot, AI: Artificial Intelligence, NPL: Natural Language
Processing, LM: language Model, FTPR: Flight Test Program Requirements, TPKEY: Test Point Key

1 Introduction
The Airbus Defense and Space organization has
grown a lot in recent years, so it is increasingly
difficult to access required information quickly and
efficiently.

This is the reason why TABAI has been envisaged
to be develop.

TABAI is a Text Assistant based on Artificial
Intelligence with the objective to help Test activities
such as plotting Test parameters corresponding to a
specific Test, to check the status of a program, to
find documents using key-words, etcetera.

The interface of TABAI is a Chatbot that interprets
the user’s requirements using Natural Language
Processing,

Fuzzy String searching that interprets the request
and a server who finds the information and sends it
to the Chatbot.

In the Figure 1 you can see the workflow of TABAI.

Figure 1.TABAI Workflow

	 The European Test and Telemetry Conference – ettc2022	 221

DOI 10.5162/ettc2022/9.4

.

2 TABAI components

TABAI consists of a Chatbot-like interface with a
multiple of utilities such as accessing Test
information contained in databases, Test data files,
Test document files, Test video files, running
analysis tools , read out emails and finally a server
that finds and provides the information required by
the user.

2.1 TABAI tool

The interface is a Chatbot developed in Python
[Ref.1].

Figure 2. Interface

TABAI tool is composed by:

 Intents.json :JSON File that lists different tags

that correspond to the different chat’s inputs
and the corresponding chat´s answers used in
the Chatbot.

 Chatbot_engine.py: A python class in charge of
interpreting user requests based on NLP and
fuzzy string machine techniques [Ref.2]. That

request is compared with the list contained in
Intents.json and the most similar one is selected.

 Chatbot_DB . Python package to access to
database.

 metaClient.py : Python package to access to file
flight via server.

Figure 3. Intents.json

 TABAI_GUI.py : Is the graphics interface that

interacts with the user.

 Metaserver : A program written in C++ that
serves to the client the user’s requests via
socket.

 metaClient.py : A python class that

sends/receives the user’s request to the
Metaserver.

 TABAI.py : Main program in Python with the

functions of user requirements interpretation
using the chatbot_engine class ,execution of the
corresponding actions using metaClient class
and finally sending it in the TABAI_GUI.

2.2 Chatbot engine

A Chatbot is a computer program that simulates
human conversation through text or text-to-speech.

A critical part of Chatbot implementation is selecting
the right natural language processing engine (NLP).

	 The European Test and Telemetry Conference – ettc2022	 222

DOI 10.5162/ettc2022/9.4

.

In the first version of TABAI, a Keras sequential
neural network model was used as NLP. This model
was trained using the list of sentences included in
the Intents.json file.

Afterwards a Fuzzy String Comparison based on:
 Levenshtein distance

 Sort alphabetically words

 Removing blank spaces between words in
sentences

was tested

Finally, it was decided to use Fuzzy String
Comparison since it worked much better for this
use case.

2.3 Access to links

This is the simplest function of TABAI, the links are
directly included as a response in the Intents.json

In the Figure 4 you can see how are introduced the
links in the json file and in the Figure 5 how use this
feature in TABAI interface.

Figure 4. TABAI links

Figure 5. TABAI link

2.4 Access to Test Files information

During the last 30 years, several formats for storing
Test Files have been used, depending on the current
technology and the upcoming requirements. As an
example, 30 years ago the number of available
parameters were around hundreds and nowadays
we manage hundreds of thousands, therefore the
format to store these parameters has completely
changed.

As we realized that the format of the Test Files
change, and will change in the future, we decided to
develop a network based unified protocol to access
these data (FxS). In this approach, the final
applications (plotting tools, analysis tools, any
application that need Test Data) will remain
unchanged, regardless the format we used.

For each format and new format, an FxS Server is
developed that is able to serve data to any client
compatible with this protocol.

	 The European Test and Telemetry Conference – ettc2022	 223

DOI 10.5162/ettc2022/9.4

.

Figure 6. FxS Schematics

We used to handle tens of aircrafts across its
lifecycle of testing, and even for a long program the
format of the Test File could change.

In such complex scenery, sometimes is difficult to
find out which FxS server is capable to give data for
a specific aircraft/test. The solution is, the so called,
Metaserver.

This Metaserver gathers the information of all the
FxS running in our ecosystem (currently more than
40, and increasing…), basically gathers two main
information:

 Aircrafts available in each server.

 Tests available per each aircraft.

This Metaserver uses a simple UDP network
transactions based in XML for the queries and
responses. Other ways of communication (json,
REST API, and some other) will be evaluate in the
future.

For each query, the matching is not an exact match,
but a fuzzy string comparison based on the
Levenshtein distance.

The Levenshtein distance is a string metric for
measuring the difference between two sequences.

Currently, the queries available are:

 AIRCRAFT
o Query: pattern of an aircraft.

o Response: aircrafts available in any
server that best matches the pattern.

 TEST

o Query: pattern of an aircraft and pattern
of a test.

o Response: Tests available in any
server that best matches the pattern.
For each single test the Metaserver

sends all the needed information to
connect with the FxS server that really
has the test file. If there are some, the
Metaserver choose the less loaded.

2.5 Access to Data Base

Some of the information required by the user implies
accessing the Test databases. Test have several
oracle databases for the different aircraft models.

Each database contains tables with information of
flights, programs, tests point, status of the program,
etcetera.

Using TABAI you can ask for the programs of an
aircraft model or even the status of a specific
program.

3 User interaction with TABAI

The user can interact with the Chatbox using text or
using the voice. TABAI interprets user’s
requirements using Natural Language Processing
techniques and also, in the second case, using
Speech Recognition Techniques.

In neither case the user is required to write or say a
specific phrase and in a specific order, but rather
TABAI will interpret what the user requires from a
list of options.

Figure 7.User interface

3.1 Speech Recognition Technique

There are a lot of very good voice recognition
applications in our devices, in mobile phones Siri,
Alexa, in cars, in google meet etc. and it is clear that
there is no intention to compete with them. But we
decided to develop our own language model with a
reduced dictionary in TABAI since the Google voice
recognition library, apart from not being free,
required an internet connection and this was a
constraint for our application.

Three models are used in speech recognition to do
the match between the audio and the combination of
words: the acoustic model, phonetic dictionary and
the language model.

CMUsphinx toolkit was used to create the three
TABAI models. [Ref.3]

	 The European Test and Telemetry Conference – ettc2022	 224

DOI 10.5162/ettc2022/9.4

.

The last step is to generate the acoustic model and
to train it to enhance the accuracy of the speech
recognition [Ref.5].

4 Uses cases

As mentioned in the abstract, the potential of TABAI
is enormous, in this chapter, some of the use cases
that are currently implemented in TABAI are
described.

4.1 Programs info

The list of programs corresponding to an aircraft
model can be obtained using text or the voice.

There are different options, for example writing or
saying : programs C295, show C295, programs
MRTT, programs efa, show programs C295....

Figure 12 shows the output of TABAI in the case
that the user selects the C295 programs.

Figure 8. Programs C295

4.2 Program status

In a Flight Test Program, a list of requirements must
be verified and validated. All these requirements are
compiled in Flight Test Programs Requirements
documents (FTPR).

The list of the requirements for each FTPR are
translated into a list of Flight Test Points (TPKEY).

All this information is digitalized and stored in a table
of a Flight Test database.

The status of each TPKEY can be OPEN (not flown),
PERFORMED (flown but not analysed), CLOSED
(flown and validated), and PENDING (flown but not
validated).

A summary of the status of the program is obtained
clicking on a program in TABAI interface.

Figure 9. Status program C295 MW

TABAI provides the total number of FTPRs
corresponding to this program (in this example 32),
the global TPKEY status of the program as a
percentage of closed, performed, open and pending
TPKEYS.

TABAI also shows the list of FTPR with theirs
corresponding reference codes, descriptions and total
number of TPKEYS. The colour indicates the status
that predominates in the TPKEYS.

This information could have been accessed directly
by writing or saying: status program MW.

The correspondent pdf document can be accessed
by double clicking on each FTPREF.

	 The European Test and Telemetry Conference – ettc2022	 225

DOI 10.5162/ettc2022/9.4

.

Figure 10. FTPR document

By clicking on each FTPR, a new window appears
containing the list of TPKEYS with its status.

By clicking a TPKEY a window appears showing the
information about it.

In case the status of this TPKEY is performed or
closed, a second window appears containing the flight
and time slices that closed this TPKEY distributed in
folders. At the bottom of the window, the list of flight
files related to the TPKEY are also shown.

Figure 11. Info TPKEY

By selecting with a double click on one of the flight
files, a plot tool appears containing the time histories
of the characteristic flight parameters of the TPKEY
manoeuvre.

Figure 12.Plot flight parameters

4.3 Program Flights

Other functionality of TABAI is access to the flights
information of a specific program.

This information can be obtained from the list of
program by pressing the shift key and by clicking on
the selected program.

Figure 13. Program flights

This information could have been accessed directly
by writing or saying: flights MW.

By double clicking on a flight, the list of flight files
appears in a new window.

	 The European Test and Telemetry Conference – ettc2022	 226

DOI 10.5162/ettc2022/9.4

.

Figure 14. Flight files

By selecting with a double click on one of the flight
files, a plot tool appears containing the time histories
of the generic flight parameters of the complete
flight.

5 Conclusion
TABAI is a Text Assistant based on Artificial
Intelligence with the objective to be an aid to Test
activities.

In the first TABAI version a group of interesting
functions have been included in the tool, such as
access to information on the status of programs,
access to flight information or access to data files
including their parameter visualization in a plot tool.

The potential of TABAI is enormous and it is easy to
expand its functionalities by following the philosophy
of the Chatbot.

TABAI may become a fundamental tool in testing by
reducing the time required in those tasks where a
machine can do instead using Artificial Intelligence
techniques.

6 References
[1] Jere Xu https://towardsdatascience.com/how-

to-create-a-chatbot-with-python-deep-learning-
in-less-than-an-hour-56a063bdfc44

[2] Parthvi Shah. https://medium.com/mlearning-
ai/all-about-rapidfuzz-string-similarity-and-
matching-cd26fdc963d8

[3] CMUSphinx Documentation:
https://cmusphinx.github.io/wiki/

[4] http://www.speech.cs.cmu.edu/tools/lmtool-
new.html

[5] https://at.projects.genivi.org/wiki/display/PROJ/
Using+CMUSphinx+and+Training+a+Model+to
+Enhance+the+Accuracy+of+Speech+Recogni
tion

[6] https://sourceforge.net/projects/cmusphinx/files
/Acoustic%20and%20Language%20Models/

