
	 The European Test and Telemetry Conference – ettc2022	 232

DOI 10.5162/ettc2022/10.2

How to get from MBSE to virtual product testing
Gregor Staudte

Airbus Defence and Space GmbH, Rechliner Str. 85077 Manching, Germany
gregor.staudte@airbus.com

Abstract:
Model-based system engineering (MBSE) is an important and useful approach to support very large
system development. Especially within the defence aerospace industry. However, testing of system
models is often performed only on a very static and abstract level. Its use often ends after a conceptual
phase. Then the system models become detached from the real product.

The early and continuous verification and validation of the product against the MSBE models is a very
important element to reduce program risks. The “Virtual Engineering” approach is our answer to enable
testing of a virtual product as early as possible. A challenge is the relation to the MBSE world.

This paper outlines the recent experiences and the taken approach to couple the MBSE world with
virtual testing. In fact, the environment is still in the setup phase were a special focus is put into this
paper.

Key words: MBSE, virtual engineering, virtual product, virtual testing

Motivation
Most of the mistakes are made in the design
phase. In contrast, errors, malfunctions and
misbehaviour due to these mistakes are
discovered very late. The later they are
discovered, the higher the costs of removal. A
mistake that was made early in the design
phase, but is found very late, for example after
the product has been delivered to the customer,
can cost many times more compared to
detection right after the mistake was made [1].

Therefore, a virtual product testing methodology
shall be applied within our programmes. It shall
discover design errors as early as possible and
therefore reduce risks. In our context, it is not
intended, at least not today, to use virtual testing
as means of compliance. The desired benefit is,
to gain a higher system maturity when entering
the formal verification phase.

An additional beneficial side effect should be the
higher efficiency of the actual formal verification
activities on the real target product. This can be
achieved through test preparation and its
verification on virtualized means. Another
expected beneficial side effect is the reuse of the
virtual testing environment for later training
operations.

Due to the agile nature of the programme, a
virtual test bed may also act as environment to
demonstrate the increments to its stakeholders,

to validate the system and to act as foundation
for reflection.

Now to focus again on the core objective for
virtual testing “to discover errors early”, the
following question arises: What kind of mistakes
are usually made and why? Many things can go
wrong: There can be wrong tests. The
implementation of a functionality can be wrong.
A device might by integrated in the wrong
manner. Often this is due to a wrong design. For
instance, the interface definition is wrong, or the
requirements are interpreted differently, maybe
are not consistent. Anyhow, the mistake is often
made by miscommunication. Two individuals are
misaligned which leads to errors.

MBSE intends to address this misalignment. It is
“the formalized application of modeling to
support system requirements, design, analysis,
verification and validation beginning in the
conceptual design phase, and continuing
throughout development and later life cycle
phases.” [2]

The outcome of the design phase are documents
based on a complex MBSE model, which
describes the entire system. The MBSE model
acts then as input for further development
activities such as implementation, integration,
manufacturing and verification.

Consequently, a very important goal is on one
hand to verify the consistency and applicability of
the design, and on the other hand to verify the

	 The European Test and Telemetry Conference – ettc2022	 233

DOI 10.5162/ettc2022/10.2

correct understanding and implementation within
the preliminary work product. Since the first goal
shall be covered by the MBSE framework itself,
the second goal is the most important motivation
for virtual product testing.

The focus of this paper is on the design and
virtual product verification of avionics software.
Mechanical or electrical engineering is out of
scope.

Context
The systems addressed by this paper are in the
field of military aircraft. Programmes that
develop these systems tend to have an
exponentially increasing complexity level. Both,
on the system itself, and on the programme
setup by multiple involved nations and
companies in a partnership setup.

In order to meet customer needs better, and to
stay on budget and on time, a semi-agile
approach is used for our programme. The
definition phase is split into several increments
with a fixed duration, in which functional
extensions are provided.

The design of such systems is structured into
several layers, in which associated systems of
layer n+1 act as subsystems of a system in layer
n.

An illustrated, not to scale, timeline extract of our
programme development phase is shown in the
following Fig. 1. As remark, the design phase
can be seen as phase spanning across concept
& definition phase.

Fig. 1 Programme development phase timeline

MBSE approach
In the following, the focus is on how our
programme applies MBSE. It should also be
clarified whether the MBSE model is suitable for
virtual product testing.

The MBSE approach relies on a framework,
which provides the system engineering
capability set to rely on common solutions from
requirement, mission & operational analysis,
architecture, safety and V&V, with a full digital
continuity. As an overview, Fig. 2 visualizes our
MBSE environment and how it is embedded into
the overall engineering landscape.

The solution relies on the so-called R-MOFLT
methodology [3]. It considers structural &
behavioural views in both problem and solution
space while keeping the focus on the system of
interest and requirements along the entire
development cycle:

 Mission analysis: Focuses on identifying
the main purpose of the solution,
characterizing the problem space, and
determining possible solutions.
Therefore, it describes what the problem
is to be solved, and identifies potential
solutions.

 Operational analysis: Focuses what the
system does within missions. Therefore,
it describes the system context and
operation from user perspective.

 Functional analysis and architecture:
Identifies the system functions to
perform and their mutual relations to
meet operational needs. Therefore, it
describes how the system will work.

 Logical architecture: Describes logical
system decomposition and clustering of
functions into a logical structure in
addition with their interfaces and
corresponding behaviour.

 Technical architecture: Describes how
to implement a logical architecture, by
taking technological constraints into
account, into a sufficient level of detail to
support system implementation,
integration and V&V.

The points listed are steps within the MBSE
workflow, parts of the system model and
perspectives to view the system model.

The MBSE solution contains a programme wide
common visual modelling tool supporting
SysML® [4] as the single modelling language for
any MBSE activity. It also contains common
access and data share for all programme
partners. The integration, with respect to
continuity and traceability with solutions outside
MBSE scope, such as requirement, interface
and test management, is ensured.

Within our programme execution, the actual
MBSE practice is limited to static system
modelling and interface, down to the system
level of equipments & line replaceable units
(LRU). The lower hardware / software level is in
general not addressed by the MBSE model. Also
not addressed are interface details, such as pin
assignment or message formatting information
of communication busses.

	 The European Test and Telemetry Conference – ettc2022	 234

DOI 10.5162/ettc2022/10.2

Although the MBSE modelling tool offers
capabilities for simulation, the MBSE model itself
is not executable. The model is basically, a
structured set of attributes and parameters. The
fidelity level defines the possible simulation use-
cases. Simulations based on our MBSE model
are therefore limited to parameter evaluation.
E.g. to calculate the overall system weight, out
of weight parameters of subsystems.

These capabilities already offer some
possibilities to verify the design. It can be
checked automatically if the design complies
with certain requirements, or whether certain
parts are consistent. For the virtual product
testing purpose, as addressed by this paper,
these simulation capabilities are insufficient.
There is the need for a simulated virtual product,
which acts as the real target product.

Virtual Engineering
For that matter, our programme applies within
the verification and validation (V&V) activities,
the so-called Virtual Engineering (VE) principle.
It is the structured and standardized end-to-end
application of dynamic and functional /
behavioural modelling and simulation of the
entire system. Its purpose is mainly design
verification and validation, but it also supports to
product verification. Design verification aims to
check whether a selected design results in a
system implementation that meets the
requirements. Product verification aims to verify
the actual system implementation against the
specification. Although formal certification and
qualification activities are also a kind of product
verification, those are not addressed by VE.

Its ambition is to have a virtualized product
where testing can be performed as on a real
product by a dynamic real-time simulation. The
following two testing methodologies are
addressed by VE:

 Model-in-the-Loop: Test setup within
design verification, which uses
simulation models as unit under test.
Allows functional & logical verification of
the unit functional chains and behaviour
of the interfaces.

 Software-in-the-Loop: Test setup within
product verification, which uses a re-
targeted or re-hosted target software as
unit under test. Allows verification of the
unit implementation.

VE sets the focus on the avionics system.
Computational mechanics simulations (e.g.
computational fluid dynamics, computational
structural mechanics) are out of scope for VE.
However, simulation models based on such
simulations may be integrated by simplification
or connected by co-simulation. Goal is to
achieve real-time execution capabilities of the
simulation. Also not addressed by VE are tasks
in context of high-level architecture exploration,
operational analysis and parameter optimization.

The term “simulation” can be understood as the
execution of simulation models over time. It is
important to understand the difference of the
term “simulation model” from the MBSE model.
Both kinds of models represent a system by
describing its key characteristics, behaviours
and functions in a simplified version. The MBSE
model is not executable. It is an abstract and

Fig. 2 Overview MBSE environment

	 The European Test and Telemetry Conference – ettc2022	 235

DOI 10.5162/ettc2022/10.2

formalized system description. In contrast, the
simulation model is executable. It represents the
system behaviour over time, acting and reacting
on input data. The simulation model is not limited
to the actual system in development. It also can
represent an external system, a physical
component or a phenomenon that interacts with
the system. The simulation model is not limited
to a simplified representation of a system
component. In context of VE, it can also be the
actual avionics target software, either re-
targeted, or re-hosted. But the real physical
target device does not fit anymore into the
concept of a simulation model. Its integration
with the simulation (hybrid configuration) is also
not addressed by VE directly. It is driven by the
product verification activities, which VE supports
by providing the remaining system simulation
around the unit under test in a hardware-in-the-
loop test environment to ease its setup.

Since VE is located, similar to MBSE modelling,
on the left side of the V-model, it needs to be
tightly integrated within the overall system
development process. In this phase, the actual
system design has a low maturity. It is not fixed
and incomplete. That means, VE needs
continuously to respond on changes, and
support quick fixes of definition gaps within the
design. A certain degree of flexibility and
adaptability within the processes and tools is
necessary.

In order to setup the virtualized product and to
make use of the opportunities described, a
processes, methods and tools environment is
established. Following building blocks are an
essential in it:

 Simulation Breakdown Structure:
Describes the hierarchy of simulation
models required to develop and
integrate a full system simulation. It is
derived from the system equipment list.
It describes the context and related
equipment for each simulation model.
Therefore it defines which equipment
the simulation model represents,
together with some meta-data. The
simulation breakdown structure is
complemented with physics,
environment and simulation-specific
models.

 Functional Increment / Artefact
Roadmap: The Functional Increment
Roadmap (FIR) describes which
functions shall be realized by simulation
models in which order, to which extent,
in which fidelity at which point in time.
The Artefact Roadmap (AR) describes
which actual simulation provides a

certain functionality at which point in
time. Both together ensure that a certain
functionality needed by one component
is provided at the right time.

 Integration & Execution Environment: A
set of software tools supporting the
creation and integration of simulation
models into an executable simulation. In
addition, the simulation & test execution
runtime and additional software tools are
part. The toolset also provides the
necessary connections to ensure
exchange with the programme's
interface management and test
management solutions.

 Initial Simulation: Consist of an initial
and generic simulation model set,
integrated into an executable simulation.
It initially describes a generic system of
the same nature the programme intends
to build, integrated with a natural and
tactical environment. It intends to be
used as starting point for the functional
growth and helps to decouple the
deliverables of different suppliers from
each other.

 Environment for cooperation: Ensures
that work can be coordinated and that
information and assets are shared
between all participants. It includes
databases & repositories, together with
a version control-, issue tracking-, and
collaboration system. A special focus
must be given to our programme setup,
with accessibility by multiple companies,
in different nations, with specific military
and national regulations.

 Laboratories: Provides the physical
integration and simulation & test
execution environment accessible for all
VE participants. Since VE addresses
only virtualized avionics equipment, this
environment can be identified as a
virtual test bench. The actual
laboratories are built on top of dedicated
computers, or hosted within a cloud
environment to ease accessibility and
availability to the users.

 Joint Model Office: It is an organisation,
including a set of roles, processes,
standards and guidelines, to ensure the
concurrent development of simulation
models across all involved suppliers and
their integration into a common
simulation. It deploys the simulation
back to all participants and laboratories.
It provides all assets as described

	 The European Test and Telemetry Conference – ettc2022	 236

DOI 10.5162/ettc2022/10.2

before, and the necessary helpdesk and
support.

The clear goal is to harmonize avionic simulation
activities across various programme
stakeholders.

The following example shall outline a typical use
case, addressed by VE:

If supplier ‘A’ of component ‘B’ needs to have a
simulation model of component ‘Y’, created by
supplier ‘X’. ‘A’ should get the simulation model
of ‘Y’ from ‘X’. ‘A’ must not do it by himself, since
‘A’ might have a different understanding of ‘Y’
than ‘X’. Otherwise, ‘A’ creates a version of ‘Y’,
which perfectly works with ‘B’, until it is
integrated with the real component ‘Y’.

Integration issues shall be detected as early as
possible.

Interface Management
In between MBSE and the VE, lies the interface
management. The main purpose is to detail the
interfaces between subsystems, at all levels
underneath the system, in context of their
specific nature. Since this paper addresses
avionics, the focus is on data nature, which
includes logical interfaces (information flow
between systems) & corresponding electrical
interfaces (e.g. physical avionic network
busses). Other natures, such as mechanical
interfaces, are not addressed in here. Although
those are also part of overall interface
management.

The interface management tooling provides
exporting capabilities for software coding and
load analysis. However, the main result is the
Interface Control Document (ICD). It captures
the detailed data characteristic to ensure that
interfacing equipment is compatible and can be
integrated and operated as specified. It is the
obligation of the equipment supplier to detail the
information in negotiation with interfaced parties.
The information is hereby stored within a
common database, which also ensures the
consistency to a certain degree.

The database is split into two interconnected
sections. One section describes the interfaces of
the actual system. This includes the subsystems,
the logical interfaces in between. This includes
the product structure with all equipments and
their detailed logical and physical interfaces, and
the relation to the system structure. The other
section is specific to VE. It describes the
Simulation Breakdown Structure with the entire
set of simulation models and their relation to the
system & equipment structure. By that, a
simulation model inherits the interfaces of the
component it references. In addition, simulation

specific interfaces are described entirely in this
part. This could be e.g. a physical parameter like
the real outside temperature. It is provided by an
environmental simulation model and consumed
by a sensor model, which then outputs the
sensed value to an avionic network interface it
inherits from the referenced equipment. In
addition, prototypic interfaces can be described
in this section, which are so far not part of the
systems interface model.

Since in our approach, both interface
management tooling and the associated
databases are separated from the MBSE
environment, interface relevant MBSE model
data has to be imported to the Interface
Management environment. This separation
leads to a break in the Single-Source-Of-Truth
paradigm. In order to ensure digital continuity,
automated export/import is used on one hand,
and on the other a clear information ownership
and change management process. As
consequence, high-level changes such as a new
interfaces or equipment must be made within the
MBSE model, which is the owner of this
information. These changes will then be
reflected automatically within the interface
management environment. Low-level changes
such as the message formats are made directly
within the interface management environment.
This kind of information is not present within the
MBSE model.

Workflow Description
In the following, the VE workflow will be
described. The Fig 3 illustrates it.

Fig. 3 VE Workflow Overview

First, as part of capabilities management the
existence of the simulation model is defined,
along with the avionic equipment’s relationship,
within the Simulation Breakdown Structure. In an
iterative way, the Functional Increment &
Artefact Roadmaps are defined based on the
design and dependencies.

For each iteration, the avionic and simulation
specific interfaces need to reflect the functional
growth. The interfaces also need to be detailed
enough to be usable within a simulation. This

	 The European Test and Telemetry Conference – ettc2022	 237

DOI 10.5162/ettc2022/10.2

means that data types and formats need to be
defined, so that S/W programs can access it.

Since the Simulation Breakdown Structure is
located in the same database as the data
interfaces, the interface management
environment acts as the Single-Source-Of-Truth
for a model interface specification. It is exported
and provided to the simulation model supplier
together with the functional specification.

The supplier creates the simulation model. It can
be hand-written code, or also auto-generated by
using a Model-Based Engineering approach [5],
which might use specific exports or generated
templates out of the MBSE or Interface
Management environment. The actual quality of
a simulation is the better the more a simulation
model relies on the same source code as the
target software does. Therefore, the usage of re-
targeted avionics software is also aspired.

The initial integration is done by the supplier
before it is delivered according to the standards
and guidelines the VE Joint Model Office has
defined. In an automated process, the delivery is
verified against those rules and the basic
executability, before it becomes part of the
simulation.

It is important to consider also specification
changes made during the simulation model
development and simulation integration. These
changes are a result of either immature design
or design mistakes. These changes need to be
made at the actual data source. This can be the
MBSE or interface management environment,
with dedicated change management processes.
But it is also important not to wait for the next
iteration until a working simulation exists, maybe
with other changes then necessary. Therefore a
trade-off is made to quickly introduce changes
within the simulation and in parallel trigger the
actual change management process. An
important goal is to have a running simulation in
each iteration cycle.

Every participant has access to the simulation
and can execute it to perform tests. These are
equipment & model suppliers to perform unit
tests (although most of these can be performed
before the simulation model is delivered). These
are also system and subsystem testers, which
perform specific non-formal integration tests on
their level. The test can be the same used later
for the formal product qualification, but also
specifically adapted tests for the virtual
environment. It is important to understand that
the virtual product-testing environment if not
feasible for all kinds of tests. E.g., timing
constraints cannot be meaningfully tested, since
the actual real target environment has different
execution times & performance. The tests

execution is linked with the test management
solution. Tests can be directly triggered from
there, as well are test results uploaded to further
process them there. Some tests require a deeper
analysis and post processing of the test data
produced during the execution. For this reason,
a solution for test data analysis is integrated into
the pipeline. It is foreseen to apply the testing
toolchain in a continuous integration pipeline.
Automatable functional and regression test shall
be triggered automatically once simulation
models have been updated.

Our current reality is that almost all system level
tests require manual interaction. Either during
the test via virtualized human-machine-
interfaces, or within the post processing /
analysis step. It is our ambition to make tests
more automatable.

Environment Setup
Now a brief overview shall follow of our
experience to setup the environment. In our
programme it was identified that the MBSE and
VE approach would require preparation before
the programme development begins, when the
major contribution is within the definition phase.
There the entire environment with processes,
tools and infrastructure would need to be fully
ready. By the time the preparation started, the
MBSE approach was not defined, nor was the
VE approach fully outlined. Unfortunately, in
parallel the majority of contracts with partners
and required deliveries were defined without
knowing the MBSE and VE needs in detail. Since
both, MBSE and VE require commitment and
contribution by all stakeholders, many re-
negotiation effort had to be performed.

In our industrial environment, testing is often
seen as something to be done at the end of the
classical development process. This lead to not
adequate priorities inside programme
management to support the MBSE and VE
definition. Since VE is also a step towards test
driven development, which changes traditional
working methods, anxieties and resistances
were created in various engineering teams.
Therefore, it is important to have a clear and
proven concept even before start of the
programme concept phase. That the link
between MBSE and VE is done only by interface
management, and the limited usage of MBSE
are consequences that both approaches were
not defined then.

Summary
Virtual product testing is performed on the
means provided by Virtual Engineering to
support design & product verification. Our MBSE
and Virtual Engineering environments and

	 The European Test and Telemetry Conference – ettc2022	 238

DOI 10.5162/ettc2022/10.2

workflows are not directly linked with other.
Implicitly both are connected through the
interface management environment in a digital
continuity. However, this is limited to structural
and interface information. Although other
aspects such as requirements and functional
design are reflected in simulation models, the
information does not have digital continuity.
Manual lookup and transformation of design
information during simulation model
implementation is necessary. This is error prone.
It can also lead to the decoupling of the MBSE
model from the actual implemented reality. The
more closely functional models are linked to
target software, and the more the target software
is based on auto-generation from MBSE, the
more meaningful the virtual product testing.

Based on our experience, it is fundamental to
define the detailed approach of “How to get from
MBSE to virtual product testing” before the
programme concept phase starts. Only then it is
possible to involve all stakeholders appropriately
and to steer the necessary change process. It
may also lead to a deeper integration with a full
digital continuity and a true single-source-of-
truth paradigm.

References
[1] NIST Planning report 02-3, The Economic Impact

of Inadequate Infrastructure for Software Testing,
(May 2002)

[2] International Council on Systems Engineering
(INCOSE), INCOSE Systems Engineering Vision
2020, INCOSE-TP-2004-004-02 (Sep 2007)

[3] F. Bouffaron, Airbus MBSE Framework: Model
Execution of System Architectures (MOFLT),
MBSE Cyber Experience Symposium 2021 –
Japan

[4] Object Management Group, OMG System
Modeling Language, OMG SysML® home page
(Apr 2022), https://www.omg.org/spec/SysML/

[5] Model-Based Engineering Forum, home page
(Apr 2022), https://modelbasedengineering.com/

