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Summary:
In this work we employ model-based deep learning to optimally select the sensing locations of single-
channel synthetic aperture measurements in ultrasound nondestructive testing. We use the Fisher in-
formation as an optimization target to obtain task-agnostic selection matrices. We then link this result to 
prior findings on the behavior of the Fisher information matrix.
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Background and Motivation
The mutually-related problems of optimal sensor 
placement and sparse array design are challeng-
ing, as they are often non-convex and combina-
torial [1]. Recent advances in model-based deep 
learning have enabled data-driven solutions to 
these problems. In [1] and [2], soft-max neural 
networks are employed to achieve the desired 
structure of a selection matrix while retaining dif-
ferentiability. Soft-max networks have been suc-
cessfully applied to MIMO beam pattern design 
[1], joint optimization of communications and 
sensing [3], and the subsampling of various 
multi-channel ultrasound modalities [2]. 

In our previous work [4], we have analyzed the
Cramér-Rao bound (CRB) for target localization 
in Synthetic Aperture (SA) Ultrasound Nonde-
structive Testing (UNDT). We highlighted the
suitability of the CRB as an optimization target
by showing that, in the far-field regime, can be 
written in terms of properties of the insonification 
signal and the geometry of the scenario. In this 
work, we revisit this problem by optimizing the
Fisher Information Matrix (FIM). We consider a 
grid of discrete sensor locations to leverage soft-
max neural networks with the goal of choosing 
the optimal coordinates for the collection of sin-
gle-channel SA measurements.

Data Model
We consider a 2-D SA scenario with a single 
scatterer. The transducer is allowed to move 
along the x-axis. Using a modulated Gaussian 
pulse as insonification signal, the noiseless am-
plitude scan (A-scan) measured by placing the 
transducer at the 𝑙𝑙th position is modeled in the 
frequency domain as

ℎ(𝑓𝑓, 𝜏𝜏𝑙𝑙) = 𝑎𝑎𝑎𝑎−
𝜋𝜋2
𝛽𝛽 (𝑓𝑓−𝑓𝑓c)2+𝑗𝑗(𝜙𝜙−2𝜋𝜋𝜋𝜋𝜏𝜏𝑙𝑙), (1)

where 𝑎𝑎 is the scattering amplitude, 𝛽𝛽 regulates 
the bandwidth, 𝑓𝑓c and 𝜙𝜙 are the frequency and 
phase of the carrier, and 𝜏𝜏𝑙𝑙 is the time delay be-
tween the scatterer and the transducer which de-
pends on the coordinates (𝑥𝑥, 𝑧𝑧) of the scatterer.

Sampling (1) over the frequency 𝑓𝑓, a vector 𝒉𝒉𝑙𝑙 ∈
ℂ𝑁𝑁f is obtained. All 𝐿𝐿 of the noiseless A-scans 
are then stacked into the vector 𝒉𝒉 ∈ ℂ𝑁𝑁f⋅𝐿𝐿 . In
practice, 𝒉𝒉 can only be observed in the presence 
of noise. We model the measurement data as 
𝒚𝒚 = 𝒉𝒉 + 𝒏𝒏 with 𝒏𝒏~𝓒𝓒𝓒𝓒(𝟎𝟎,σ2𝑰𝑰𝑁𝑁f⋅𝑳𝑳), where 𝑰𝑰𝑵𝑵 is an 
identity matrix of size 𝑁𝑁 × 𝑁𝑁. When subsampling 
𝒚𝒚, only 𝐾𝐾 ≪ 𝐿𝐿 A-scans are gathered, which can 
be represented as

𝚽𝚽𝒚𝒚 = 𝚽𝚽𝒉𝒉 + 𝒏̂𝒏 ∈ ℂ𝑁𝑁f⋅𝐾𝐾 . (2)

In (2), the subsampling matrix 𝚽𝚽 has the struc-
ture 𝚽𝚽 = 𝐒𝐒 ⊗ 𝑰𝑰𝑁𝑁f, where 𝐒𝐒 ∈ ℝ𝐾𝐾×𝐿𝐿 is a selection 
matrix. Furthermore, ⊗ denotes the Kronecker 
product and the subsampled noise 
obeys 𝒏̂𝒏~𝓒𝓒𝓒𝓒(𝟎𝟎,σ2𝑰𝑰𝑁𝑁f⋅𝐾𝐾).

Proposed Optimization Target
We propose to maximize the elements along the 
main diagonal of the FIM. This maximizes the 
sensitivity of the data model to changes in the 
parameters. However, the FIM is often poorly 
conditioned, and its trace can be dominated by a 
small number of parameters that may not be of 
interest. Let 𝝃𝝃 = [𝑎𝑎, 𝑥𝑥, 𝑧𝑧]T be a vector containing 
all the unknown model parameters. The pro-
posed optimization problem is

min
𝚽𝚽

∑ −‖𝚽𝚽 𝜕𝜕𝒉𝒉
𝜕𝜕𝜉𝜉𝑖𝑖
‖
2

2
+ 𝜆𝜆‖𝚽𝚽𝚽𝚽T − 𝑰𝑰𝐾𝐾‖22𝑖𝑖∈ℐ , (3)
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where ℐ is a set containing the indices of the pa-
rameters of interest and λ is a hyperparameter. 
When ℐ contains all the parameter indices, the 
first term in (3) is equivalent to the trace. 

Simulations 
Prior knowledge of the specimen’s geometry is 
available in most NDT applications, which can be 
used to infer the Region of Interest (ROI). The 
sensor placement design is optimized such that 
the image quality in the ROI is prioritized and one 
can localize critical flaws. 

In the pulse echo model (1), the center frequency 
is 𝑓𝑓c = 4 MHz  and the bandwidth factor is 𝛽𝛽 =
𝑓𝑓c2. The phase is set as a constant 𝜙𝜙 = −2.6143. 
As to the measurements, we utilize 𝐿𝐿 = 48 sen-
sor locations with horizontal distance ∆x =
0.5 mm to collect A-scans. Each A-scan consists 
of 𝑁𝑁f = 46 Fourier coefficients.  

In the simulated scenario, we consider a single 
point scatterer existing in the specimen. Then, 
we randomly vary the values of model parame-
ters 𝝃𝝃 to generate a training dataset containing 1 
million data. The point scatterer locates in the 
predefined ROI with a higher probability and their 
scattering amplitudes follow the Gaussian distri-
bution 𝑎𝑎~𝓝𝓝(15, 3).  

By importing (3) as the loss function, a soft-max 
neural network is built to select 𝐾𝐾 = 24 optimal 
sensor locations. The code is implemented in 
PyTorch and the training process runs on an 
NVIDIA A100 GPU node. 

Results 
The Optimal Sensor Placement (OSP) is suc-
cessfully derived and illustrated in the Fig. 1. In 
addition, we bring in the Full Sensor Placement 
(FSP) and Uniform Sensor Placement (USP) for 
comparison. Because the FSP can serve as a 
reliable reference and the USP is the easiest 
sensor placement method to implement in simu-
lation and practice. 

 
Fig. 1. Sensor placement illustration: (a) Full Sensor 
Placement (b) Uniform Sensor Placement (c) Optimal 
Sensor Placement 

Furthermore, we apply FISTA to recover the 
measurement signals that are sampled by the 
three methods. The three procedures are termed 
as FISTA + FSP, FISTA + USP and FISTA + 
OSP, respectively. The reconstructed image 
quality plays a significant role in the performance 
evaluation. For further quantitative assessment, 
we consider the commonly-used Contrast-to-

Noise Ratio (CNR) as the metric, which depends 
on the correctness of the scatterer’s location.  

Following the same data generation strategy, we 
create an evaluation dataset with 𝑁𝑁Evaluation =
1000 . We compute the Cumulative Density 
Function (CDF) of CNR for the three sensor 
placement designs and illustrate them in Fig. 2. 

 
Fig. 2. CDF of CNR for FISTA+FSP, FISTA+USP and 
FISTA+OSP (right curve indicates a better perfor-
mance) 

By observing the CDF against CNR curves, the 
right curves indicate a better performance due to 
a higher CNR of the reconstructed image. There-
fore, the image quality of FISTA + OSP is obvi-
ously better than FISTA + USP and approaches 
FISTA + FSP. 

Conclusions 
This paper demonstrates the application of a 
soft-max neural network in optimal sensor place-
ment in ultrasound NDT. We take the CRB-re-
lated Fisher Information Matrix into account 
when designing the optimization target. The 
evaluation results show the feasibility of the op-
timal spatial subsampling. Furthermore, the al-
gorithm can be applied in sparse array design 
and be promising in adaptive sensing methods. 
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