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Introduction

For online process monitoring purposes micro—rheometers based upon quartz resonators are commonly used but
suffer from weak comparability of the results compared to those obtained from traditional laboratory viscome-
ters [1]. This discrepancy is partly explained by the low agitation of the measured liquid within these micro—
rheometers — this issue is addressed by a larger deformation at lower frequencies in our present measurement
setup. In our contribution we investigate a miniaturized clamped membrane device as shown in Fig. 1 (left). This
system consists of a sample cell of 5.6 x 12 x 1 mm? size filled with the liquid under test. lts bottom and top
side both are sealed by 52 pm thick PMMA-membranes which are excited to vibrations. For the analysis of this
problem finite element (FE) solvers fail due to the large amount of elements required for adequate discretization.
The viscosity coefficient of the liquid under test is linearly related to the power dissipation due to shear velocity
gradients in the sample fluid which causes a finite Q—factor of the resonance peak. Fig. 1 (right) shows that
moreover considerable gradients do mainly occur within a thin — tens of microns — layer close to the membrane—
fluid interface. Therefore a FE discretization of the outermost liquid regions would have to be sufficiently fine as
well.

In the presented contribution the problem of high numerical complexity is addressed using an alternative approach,
namely a semi—numerical representation in the spectral domain. The membranes are described by using equations
of motion and the constitutive equations of linear visco—elastic bulk material. The fluid sample volume is modeled
employing Navier—Stokes equations, which can be linearized in case of the present problem (as will be discussed
in the paper). The description of the fluid includes first and second viscosity coefficients and pressure—density
coupling via compressibility coefficient as well. Our approach is based upon the conversion of the thus obtained
partial differential equations (PDEs) to ordinary differential equations (ODEs) by expressing the field variables
(displacements and stresses) by a harmonic representation in the spectral domain [2]. This yields two Eigenvalue
problems — one for the membranes and one for the fluid. The computational effort is reduced drastically this
way. The principle solution of the obtained Eigenvalue problem describing the fluid is coupled to the membrane
equations by means of a propagator matrix, which is derived from the solution of the Eigenvalue problem of the
membrane. Taking into account boundary conditions and rearranging the solution system finally leads to the
frequency response of the sensor. By analyzing the frequency response in the vicinity of the resonance peak, a
behaviour similar to a damped second order system is revealed. The numerically found frequency response is
compared to experimental results obtained with the micro-rheometer shown in Fig. 1 (left). For time—harmonic
excitation of the membranes via Lorentz forces conductive paths are patterned. Read—out is also achieved by a
further pair of conductive paths. Imposed forces result in time-harmonic displacements which induce voltages in
the read—out path. The frequency response showing dependency to liquid and membrane properties is measured
by a lock—in amplifier setup. In the following sections the model is outlined in detail and numerical sample results
are presented.

Modeling of the membranes

According to the linear visco—elastic properties of solids described by the Voigt—Kelvin model [3], the relation
between the stress tensor T' and the strain tensor S is given by T' = ¢ - S + n - S /0t, where ¢ and 7 denote
stiffness and damping tensor of the considered solid!. The equation of motion for linear visco—elastic deformations
expressed in terms of stresses T' and displacements u without external forces is given by

0%u

LAn element in row k and column [ of the linear strain tensor is given by Sy; = 1/2 (Quy/dx; + Ouy/Ouy) with uy denoting the
Ekth displacement component
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Figure 1: Photograph and schematic of the sensor. The membranes carry conductive paths for excitation by
Lorentz forces. Separate paths are used for read—out (left). The calculated energy dissipation in the fluid in layers
at y is shown right. Main dissipation occurs close to the membranes (at y = £0.5mm).

where p, denotes the mass density of the membrane material?. Substitution of Hooke's law into Eqn. 1 yields
a system of PDEs describing the behaviour of a linear bulk material. Introducing Lame’s constants us and Ag
and their lossy equivalents — shear viscosity coefficient p/, and volume viscosity coefficient A\, — Eqn. 2 can be

obtained3. 9 0
peit = (st 5 ) VPt ((/\s +ps) + (A + “;)§> V(V-u) (2)

Modeling the fluid cell

The equations of motion of a viscous fluid without considering external forces are provided by the Navier—Stokes
equations and by the continuity equation, given in Eqn. 3 and Eqn. 4 (see [4]).

pr(i+ (a-Vya) = —Vp+pVia+ Ny +pf)V(V-a) (3)
%Jrv'(wﬂ) = 0 )

The considered velocities are assumed to be small and time—harmonic. Thus the nonlinear convective part of
Eqn. 3 (i - V)& may be neglected*. A coupling between pressure p and mass density p; is achieved using the
adiabatic compressibility coefficient ¢ = p~!(9ps/dp). Assuming small deviations p and py . from the equilibrium
po and pyro, Eqn. 3 and Eqn. 4 can be rewritten [1] as.

1
prit = EV(V~u)+u’fV21l+( 4 1) V(V - (5)

The spectral domain method

In stratified sensor geometries dependencies of field variables along the axis of stratification — in our problem the
z—axis — can often be neglected, and a 2D simulation of the sensor is sufficient. Due to a periodic approximation
outlined in the following, the method can be readily applied to model the fields in the fluid cell. The linear problem
in Eqn. 5 contains no mixed derivatives which may be solved using a separated solution ansatz (z,y,t) =
Py (y) - z(z) - Y (t)°. We introduce a partial spatial spectral Fourier transform, where w denotes the angular
frequency of the time—harmonic part and k, is the wave number associated to the harmonic spatial term in
z—direction: 1 o oo
Vo) =) g5 [ [ Vel () exp(ihas — utidkde. (6)
— 00 —0o0

The linearity of the stated problem allows to solve Eqn. 5 for given frequencies w and wave numbers k, and to
superpose the solutions with adequate weighting functions ¥y (k) and ¥, (w):

2In the remainder of this paper, the subscript s refers to solids.

3Lame’s constants are provided by ps = Es/(2(1 + vs)) and As = Esvs/ ((1 +vs)(1 — 2vs)) with Young's modulus Es and
Poisson’s ratio vs [6]

4The contribution of the convective part is on the order of 103 compared to linear terms which is proved by resubstitution of the
calculated velocity field.

5The vector v(z,y,t) contains the field variables describing the problem.
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For further derivations, a single spectral case ¢(z,y,t) of this spectrum is considered:

P ks, y,w) = Py (y) - exp(jhez — jwi) (8)

By substituting the ansatz from Eqn. 8 into Eqs. 1 and 5, the PDEs describing the membranes and the fluid cell
are transformed into two systems of second order ODEs. An obvious selection of representative field variables
would consist of the displacement vector u = [uw,uy]T and its derivative with respect to y. However for the
considered sensor geometry (Fig. 1) it is more advantageous to replace the derivatives with stresses. In the planar
case the stress tensor consists of three values T, Ty, Ty, but only two of them suffice to describe the stress
situation, as these values are not independent (see Mohr's circle [6]). We chose shear stress T}, and normal stress
T,y as they are imposed at the top of the membranes. The resulting field variables are thus written as

Dk, v w) = [ua (), uy(y), Toy (4), Tyy ()] - exp(jkor — jort), (9)
and the obtained system of first order ODEs of rank 4 describing the membranes considering Eqn. 8 is

0 0

—P(ke,y,w) = Asp(ke,y,w), 7

5 o) = Aty (0). (10)

In a completely analogous manner the system describing the fluid layer is found as a%wy(y) = Appy(y). The
general solution of the Eigenvalue problem shown in Eqn. 10 is given by Eqn. 11 as

Py (y) = exp (Asy) - € = c1v1 exp (A\1y) + c2v2 exp (A2y) + c3vs exp (A3y) + cava exp (Ay) (11)

with vy - w4, A1--- Ay denoting Eigenvectors and Eigenvalues of the system matrix A;. The constants ¢ =
[c1---c4]” have to be set according to adequate boundary conditions. A similar solution is obtained for the fluid
layer. The structure of the system matrices As and A describing visco—elastic material and the fluid layer imply
Ao = —A1 and Ay = —)A3 and Eqn. 12 regarding the Eigenvectors vy to vy4.

V11 —v11 V31 —V31
V12 V12 V32 V32
vy = Vg = ,Ug = Vg = (12)
V13 V13 V33 V33
V14 —V14 U34 —U34

Boundary conditions

The Lorentz forces apply stresses in y-direction to the conductive paths on top of the membranes. The velocity
of the resulting excitation of the membranes is measured by the read out paths of the sensor. To calculate
the displacement vector u and the stresses at any layer y of the sensor we have to determine the four constants
[c1 ... ca] according to the given boundary conditions. This could be achieved by solving Eqn. 11 for the constants
at a position yg if 1, (yo) were known. Unfortunately in our case this is not possible since only the stresses T},
and T, are known at two positions +y, = £(d,, + f;/2). Due to linearity, any stress distribution on top and
bottom membrane may be imposed by superposing the two principal excitation modes — symmetric (excitation
of top membrane in +y and bottom membrane in —y direction) or anti-symmetric (top and bottom membrane
equally directed see also Fig. 2). For both cases we consider the symmetry relations given in Fig. 2. Employing
these symmetry relations we obtain Eqn. 13.

These equations can be used to describe the field within the liquid. The unknown coefficients [c; - - - ¢4] have to
be determined from the boundary conditions at the membranes.

Uz (y) v11 cosh(A1y) w31 cosh(Asy) Uz (y) v11 sinh(A\1y)  wvs1 sinh(Asy)
Uy () _ 1 {wigsinh(A1y)  wvsgsinh(Azy) {cl] uy(y) _ 1 o1z cosh(A1y) w32 cosh(Azy) {cl] (13)
Toy(y) vigsinh(Ay) wvs3sinh(Asy) | |c3| ' |Toy(y) 2 |v1g cosh(A1y) w3z cosh(Asy)| |cs
Tyy(y) v14 cosh(A1y) w34 cosh(Asy) Tyy(y) vigsinh(A1y)  wvsgsinh(Azy)

Esym Easym
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Figure 2: Symmetry relations for the two principle excitation modes.

Propagation of field variables

The field within the membranes can also be described in spectral domain by Eqn. 10. However, we now integrate
Eqn. 10 with respect to y to obtain a relation between 1), (y) at two faces of the membrane, the so—called
propagator matrix P [2]:

Yy(dy/2) = P(—dm) - ay(dy/2 4 dm). (14)

As all components of 1), (y) are continuous at the interface y = d;/2, we can write, e.g. for the symmetric mode
c

() = Pald) 8,1 /2) = Paldn) - By /2)- | (15)

As T, and T, are prescribed at y;, we can obtain ¢; and c3 and hence the entire field distribution.

Actuation

The implemented routing of conductive paths is shown in Fig. 4. The read—out path consists of several loops
to increase the output voltage level. The excitation path is routed to achieve anti—symmetric excitation of top
and bottom membrane. The imposed stress Ty, has rectangular shape and yields a continuous spectrum after a
spatial Fourier transform (see Eqn. 7). To avoid dealing with an infinite spectrum we approximate the problem
by considering a periodic problem where the interval = (—L/2, L/2) represents the fundamental period. The
continuous spectrum thus reduces to a discrete spectrum or Fourier series. However, this means that we can not
fix any field variables at the boundary at = £L/2 which implies that we can not apply the no—slip condition at
these boundaries. As this discrepancy is mainly restricted to regions near the boundary at = =L /2 the obtained
results still are valid for the complete setup. As for the time domain we consider time—harmonic excitation. Hence
it is sufficient to consider the associated spectral line w.

TTW(X,yb) |—| ! F

x=-L/2
Y=Y

v

x=L/2
Y=Y,

T T, (X,-Y:)

L

Figure 3: Normal stress distribution and Lorentz forces F' on top and bottom membrane.

Definition of the transfer function

The stresses Ty, (y5) and Ty, (—ys) are imposed by Lorentz excitation and the shear stresses T, (y5) and Ty (—yp)
are assumed to be zero as air friction is neglected. In Fig. 5 a displacement field simulated with the presented
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method is shown. For the assumed linear problem, a transfer function relating input and output can be found.
The output signal U;,4 is the voltage induced in the read—out path, being proportional to the external magnetic
induction B with amplitude B, length [ perpendicular to B and the membrane top velocity du, /0t at Lys.
The input signal I... is a current driven through the excitation path forming a force proportional to current and
magnetic induction B. The desired transfer function thus turns out to be an impedance Z(w) given in Eqn. 16.
Summing up the contributions of all paths at = [l,.1 - - - 1,4], we obtain (see also Fig. 4:

. Ly
Uind _ 4.7WB2 inl“ uy(xa ybaw)

Z(w) =
( ) Ie:vc b Tyy(leaybaw)

(16)

. excitation path
mounting

holes readout path

' excitation path readout path

Figure 4: Implemented routing of the conductive paths on membrane top (left), and cross section through the
sensor cell showing path geometry (right).

Discussion and Conclusions

Fig. 5 shows the simulated displacement field for a 55% glycerine-water mixture at w = 320s~! and displacement
component® v, at £ = 0. The simulated velocity field is shown in Fig. 6. The velocity component v, = 1, at
x = 0 show that high velocity gradients — responsible for energy loss due to viscous friction — do mainly occur
close the membranes. The total energy loss in the fluid sample cell can be approximated using relation’

,Ll,/f ov; a’Uj 2
P=_ 1

The energy loss in any layer of width dy at y is shown in Fig. 1 (right). Fig. the simulated membrane top
displacement and measurement results obtained by lock—in amplifiers and Eqn. 16 are compared for three different
mixtures. The model describes the measurement reasonably well, the deviations can be related to unequal clamping
support of top and bottom membrane (which is not contained in the model) and insufficient calibration of the
measurement setup (phase errors). Measurement results obtained with the current setup showed that the viscosity
range of liquids under test is limited. The presented simulation method helped adapting setup parameters like
fluid cell height, membrane thickness, and mixture ratio of symmetric and anti-symmetric excitation mode to
achieve sensor designs working well in the desired range of the viscosity and density coefficient of the liquids under
test.

SViscosity coefficient and density are Wy = 7.2e73 Pas and py = 1139 kg/m3.
"This relation is valid for incompressible flow. Energy dissipation due to the 2nd viscosity coefficient is considered neglectable.
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Figure 5: Simulated displacement field (left) and displacement component wu, at x = 0 (right) for a 55%

glycerine—water mixture.
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Figure 6: Simulated velocity field (left) and velocity component u, at 2z = 0 (right) for a 55% glycerine—water
mixtrure.
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Figure 7: Frequency response (displacement at thef membrane top) for three different mixtures of water and
glycerine acquired with the current setup.
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