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Hearing aids that have a microphone response that is dependent upon the direction from which the sound
arrives have been shown to provide benefit in understanding speech in background noise for hearing im-
paired listeners in many situations [1]. The directional response acts like a spatial filter with an increased
gain for sound coming from the forward direction (the usual direction the wearer is attending) over sounds
coming from other directions. The small size of hearing aids is a challenge to making a directional system,
requiring microphones that are closely matched in their response characteristics. Providing such closely
matched pairs of microphones is a fascinating mathematics problem, involving probability, graph, statistical,
and quality control theories.

Directional Response

The directional microphone response in hearing aids is most often implemented using two microphones
separated on the body of the aid by some distance d. The directional response [3] is given by

R(6) = gosoeij% cosf 4 gmej% cos

where s; are the complex sensitivities of the two microphones, g; are the complex gains the hearing aid
system applies to each microphone, k = 2r7f /c is the acoustic wavenumber at frequency f for sound speed
¢, and @ is the angle from which the sound is arriving with respect to the line from microphone 0 to 1. Modern
hearing aids are quite small and narrow, so the spacing d is typically about 1 cm on a horizontal line pointing
forward when the aid is worn properly. With this close spacing, the system is working in the long wavelength
limit kd < 1 across the useful frequency band of the hearing aid. Assuming that the sensitivities of the
microphones are identical (sy = s;) the gains g; can be chosen so the directional response follows the
limigon family of curves (Figure 1)
R(0) = A+ Bcos¥,

where A and B are real valued numbers. The limigon curves have the highest value at # = 0 (the forward di-
rection) and have one or two nulls symmetrically between +-90° and 180°. Many hearing aids have adaptive
systems that steer these nulls toward the loudest signal interfering with the sound coming from the front.
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Figure 1: On the left are ideal directional responses showing different null angles. The figure on the right
shows how a highly directional pattern can be degraded by a small mismatch between the microphones.

If the microphone responses are not identical, however, the directional response is
] 0B
R(#) = (A+ Bcosf) + §(AjL Bcos ) tig

where the sensitivity ratio 6 = s;/s; is a complex-valued function of frequency. The first term is the expected
response and the second term has the same shape so does not degrade the directivity. The third term,
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however, is an error term that degrades directivity. The error gets worse as kd gets smaller, which occurs
for small d and lower frequencies. Figure 1 shows a degraded directional response at 200 Hz, where a
-3.88 Hz difference in f. has caused 6 = 0.038dB, — 1°.

Microphone Response

The sensitivity ratio ¢ is not an arbitrary function of frequency because microphone sensitivity is not an
arbitrary function. A hearing aid microphone response can be well modeled as a filter with a first-order
high-pass and a resonance
2 f\!
s(f) = sm < -5 +4+j— ,
0=t (-5 a)

where s, is the mid-band sensitivity, f. is the corner frequency of the high-pass, f; is the resonance fre-
quency, and Q is the quality factor of the resonance. When the sensitivity is plotted on a decibel scale, the
numbers can be read right off the plot given that M,,, = 20log,, sm, Q = 20log,, A,, A, is the difference in dB
between the amplitude of the maximum and M,,,, and f. is the frequency at which the low frequency sensitiv-
ity has dropped 3 dB below M,,,. All parameters are real-valued. The facts that are relevant to this discussion
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Log Frequency sensitivity magnitude measurements taken at several
Figure 2: Plot of a typical microphone response low frequencies. It is timg—consuming to collgpt low-
diagramming the four degrees of freedom. frequency data over sufficient periods to stabilize the

measurement. It can be shown that a phase measure-

ment ¢ at a single low frequency is strongly correlated
to the corner frequency. At the high frequencies, the resonance frequency is not quite the frequency of the
maximum value (f, =~ f,, the frequency of A,), but it is mathematically related and strongly correlated.

Matching Criteria

Four real-values parameters (M,,, ¢, f,, and Ap)

Matching completely characterize a microphone response,

Quality Tolerance so matching these parameters between two mi-

Limits o X—Y|<t tfo crophones is necessary and sufficient to match

M, (dB) 5813 17 10 = 17 the complex response throughout the frequency
& () 31 20 0.65 range. Fewer parameters would underdetermine
£, (Hz) 4500-6000 190 250 13 the match, more would overdetermine the match.
A" (dB) 943 10 15 15 Overdetermining the match does not improve the
P quality of the match. Through analysis and simu-

Table 1: Specifications and distribution data for pa- |ation [5], it has been determined that to have high
rameters used for matching a typical hearing aid mi-  directivity across the usable frequency range of a
crophone pair. The actual matching tolerance for the  typical hearing aid that the microphones should be
mid-band sensitivity M,, is much tighter than shown matched according to the criteria in Table 1.

here as discussed in the text. The phase ¢ is mea-

sured at 200 Hz, and does not have quality specifica- The directivity of the pair is very sensitive to differ-
tion limits. ences in M,, and require a matching tolerance far
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tighter than shown in Table 1. Fortunately it is easily corrected by calibrating the microphones in the hearing
aid system at the time of manufacture. A modest gain or attenuation g; is applied to the appropriate micro-
phone to equilibrate their mid-band sensitivity. Calibrating phase is a much more complicated process [4].

It can be seen in Table 1 that the matching tolerances are much tighter than the manufacturing quality spec-
ifications. Attempting to manufacture all microphones within the matching tolerances would drive the cost
of the microphones beyond market acceptability. Instead, the matching parameters are measured (using
our best measurement practices to minimize measurement error as discussed later) on all microphones
manufactured in a batch, and pairs of microphones that comply to all the matching criteria are chosen and
packaged as matched pairs.

The Statistics of Matching

The matching process has its own limitations. Intuitively, it is obvious that narrower matching tolerances
means fewer matches within a lot. To quantify, we assume the measured parameters follow a normal
distribution. This is not strictly true, but it is a good enough assumption to serve as a starting place to
understanding the statistics of the matching problem.

In a normal distribution X (o) with standard deviation o, the probability of value x is given by the probability
density function (PDF)

1 e
p(X(U);X)=\/%ae 27,

The probability of a value less than x or between x; < x < x; is given by two forms of the cumulative density
function (CDF)

X 1 X 2
c(X(o);x) = / p(X(o)y)dy = 5 (1 +erf ()) P c(X(o)ixaxe) = / p(X(o);y)dy.
—o0 2 \/EO' X1
where erf(x) is the error function. The probability density of the sum of two independent randomly distributed

variables is the convolution integral of their density functions [2, p 116],

o0

pX +Y) = p00) < p(Y) = [ p(Yiy)p(Xiw =) dy.

— 00

From the last two properties, it is easy to verify that for two normal distributions with the same standard
deviations

X(0) £ Y(o) = W(V20),
that is, the sum (or difference) of normally distributed values has a standard deviation of v/2¢.
Now consider the matching problem, where we want to know the probability that two values match to within

a tolerance t, or, what is the probability P; that |X — Y| < t? Writing that another way, —t < X — Y < t, it
is obvious that the solution is given by the CDF

P, =c(X(0) — Y(0);—t, t) = c(W(V20); —t, t) = erf (%) ,

When matching on several parameters, all matching criteria must simultaneously be true (an AND condition),
so the probability of matching on all parameters is the product of the probability of individual parameters

matching,
v t
P = H erf (k) ,
i) 20’k
where M is the number of independent parameters determining a match. In a population of N microphones,
there are N(N — 1)/2 possible combinations of two microphones to check for conformity to all matching

criteria, so the most likely number of matches found will be
E= % N(N —1)P;.

Sadly, this cannot predict the number of actual pairs of microphones we can pull from the lot because any
one microphone can be a member of only one pair, as described below. However the matching probability
P; can serve as a figure-of-merit for a proposed set of matching criteria.
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Optimal Matching and Graph Theory

Graph theory is a branch of discrete mathematics used to model pairwise relationships between items in a
collection and is the perfect discipline for analyzing this problem. A graph is composed of vertices, often
represented a dots, which may be connected by edges, represented by lines connecting the dots.

For the matching problem, each

b.

microphone is represented by a
vertex, and edges are drawn be-
tween vertices representing two
matched microphones. The for-
mula above predicts the number
of edges drawn in the graph of N
vertices. It is immediately obvi-
ous that some microphone are not
matched by any other in the lot

C.

Figure 3: A graph of microphone matching among four microphones and cannot be paired. There are
(a.) One strategy (b) results in a single pair being drawn, whereas a  also clusters of three matched mi-
different strategy yields two pairs (c.)

crophones, only two of which can
become a pair. The third will be

left out due to arbitrary decision. In the larger clusters the repercussions are less obvious, but one begins to
suspect that the number of pairs which can be removed depends strongly upon the choice of which matched
microphones are paired. Figure 3 shows a small lot of microphones and two different strategies for choosing

pairs, one which results in one more pair than the other.
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Figure 4: Results from simulations matching 200 micro-
phones as a function of matching probability P;. Two
pairing strategies are shown, either selecting pairs as

soon as a matching microphone is built (“Running”) or

the optimized pairing described in the text.

Finding the strategy that maximizes the number
of pairs pulled from a lot is a nonlinear integer
optimization problem which in general are very
difficult to solve. Fortunately, this specific prob-
lem can be approached by a relatively simple al-
gorithm that results in an optimal or nearly opti-
mal solution. The idea behind the solution comes
from the game “Six Degrees of Kevin Bacon,”
in which the successful player recognizes early
that some actors are particularly well connected,
that is, they have appeared in many movies with
other actors, including Mr. Bacon. The problem
reduces to finding a shorter path to one of these
well connected actors. If the rules of the game
are altered so these actors cannot be used (tak-
ing John Lithgow or Elizabeth Shue out of play,
for example) the game becomes much harder.

Conversely, to maximize the number of pairs found in the lot one should not remove well connected micro-
phones. The strategy is to find the loneliest microphone and pair it with its loneliest neighbor. In terms of
graph theory, the degree of a vertex is the number of edges connected to it, and the depth-one neighbors
of a vertex are the vertices at the other end of those edges.

* Find the vertex with the lowest non-zero degree

 Find the depth-one neighbor of that vertex with the lowest non-zero degree

* Remove those two microphones from the lot and package as a pair

* Delete the two vertices and their edges from the graph

* Repeat until all vertices are degree zero
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Measurement Error and Quality

Our ability to match microphones based on measured parameters is limited by our knowledge of the true
value of the parameters used to make the match. All measurements have some error, and as the tolerances
get tight measurement error plays a larger role, and may result in rejection of good pairs or quality escapes
if not carefully considered.

A test system is qualified using a standard Gauge Repeatability and Reproducibility (GR&R) process, which
compares the range of a measurement taken by a number of observers over a number of trials to the
specified quality limits of the device being tested. The values in the R&R study are assumed to represent
samples from a normal distribution with standard deviation o,,. The total range of the measured values
is taken to be either the range which encompasses 99% of the distribution (g. ~ 5.150,,,) or gc = 60,
depending on the standard used. The GR&R g is the ratio of the measurement range to the product tolerance
range t,, often expressed as a percentage. Our factories report the GR&R of all our test systems, from which
we can extract the standard distribution of measurement error o,, = gt,/g.. There are some arguments
concerning the value of t, when it comes to matching, whether ¢, = t or t, = 2t. Our convention is t, = t.
As long as same convention is followed by the person writing the GR&R report and the person using this
analysis, the following formulas will be correct.
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Figure 5: On the left, the distributions of measured and true values of X and Y. On the right, the distribution
of the measured and true difference between the values. The true values that fall outside the measured
values are out of specification and considered quality escapes.

Consider the effect an unbiased, normally distributed measurement error e will have on a population of paired
microphones (X, Y'), which were paired based on measured values. The measured value of X is arbitrary
as it is only a reference for Y, so its probability density p(X) = 4(0), where §(x) is the Dirac delta function
of value 1 at x and 0 elsewhere. Any microphone between +t matches X, so p(Y) is the PDF of a uniform
distribution, or a boxcar function 2t wide and (2t)~* tall, as shown in Figure 5. The true values Xt and Y7
can be found by convolving X and Y with error distribution ¢, also shown in Figure 5. Convolving X7 with
Y7 yields the probability distribution of the true difference between the microphones. The convolutions can
be performed by inspection by using the associative property of convolution,

Xr# Y7 = (X x clom)) # (Y % €(0m) = (X Y) % (e(0m) * e(om)) = (5(0)  ¥) # € (V20m) = ¥ € (v20,m)

where we have use the fact that the Dirac delta function ¢ is the identity for convolutions. The convolution
integration is trivial using the CDF, thus

1 +t —t
e vron) = & (o (550) e (1)),

which is plotted in Figure 5.

The density function of the true value of the difference extends outside the match tolerance, implying that
some fraction of pairs will not be matched within tolerance +t, which would be considered a quality escape.
The quality level @ , which is the fraction of product that truly comply to the specified tolerance, is found by
integrating the density function over the tolerance limits

&c g - 2 g
Qer‘f(>+ e &/ 1) x1— ,
g 8/ ( ) g/

where we have expressed o, in terms of g and expanded the function as a series to the first term (after
having noticed that the plot of the function is linear over the reasonable range of g). This is an extremely
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interesting expression, as it directly relates quality level to the GR&R in a very simple way. Given that
quality level and GR&R are metrics commonly used in quality assurance, you would think you would see
such expressions more often.

It is now elementary to determine the that a GR&R of 9% relative to the matching tolerance is necessary
in order to achieve a quality level of 99%; that is, 1 in 100 pairs fall outside the matching tolerance. This
is almost impossible to achieve in a testing system on a high volume production line for the tight matching
tolerances discussed in this paper. However, it is possible to achieve an acceptable quality level in a test
system with higher GR&R by matching to tolerances tighter than specified (called guardbanding) and adding
a second verification layer of quality checking that directly compares the output of two microphones exposed
to the same sound input. The statistics of guardbanding and verification will be subjects of a different paper.

Conclusions

Matching microphones based on a small number

of measured parameters is a viable means of en-
suring similar performance across a range of fre-
quencies, thereby enabling high directionality de-
spite close spacing of the microphones in the ar-
ray. Reasonable yield is achievable as long as the
matching probability P; ~ 0.1 but begins to fall
rapidly for smaller values (Figure 6.) One must also
‘ ‘ ‘ ‘ ‘ be aware of the limitations of the measurement sys-
00 01 02 03 04 05 tem as matching criteria become tight. Means of de-

P, termining the matching probability and relating met-
rics of the measurement system to the matching cri-
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Figure 6: Results from simulations matching 200  t¢/i5 have been provided.
microphones as a function of matching probability
Py and varying number of matching parameters M, |t was believed early in the development of this the-
using the optimized pairing strategy. ory that the matching probability P; could be used to
predict matching yields for all matching situations or
number of matching parameters M. From simulation results, it is apparent that this is reasonably true for
Py > 0.2 (Figure 6.) However, as the matching probability becomes smaller, there is a dependence upon
the number of matching parameters, where fewer pairs can be found in the same lot of microphones if all
four parameters are used for matching. This is right where we are trying to work. For reference, the match
probability for the practical microphones described in Table 1 P; = 0.09. Further investigation will be made
in this area.
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