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Abstract: 
Within the industrial research project “Process Analytical Chemistry” (PAC) we are working on FTNIR-
spectroscopic measurement systems predicting characteristic parameters of industrial production 
processes. Those parameters are usually monitored offline or at-line with time consuming and 
expensive laboratory methods. In this contribution, we present a spectroscopic measurement 
configuration together with the required chemometric analysis, acting as an online-monitoring system. 
In order to demonstrate the potential of such a system we use the example of melamine resin 
production in an industrial process. At company partner Dynea the predicted value of the turbidity 
point is used as an indicator for the end of the batch reaction (turning off heating). Furthermore, we 
illustrate a way to verify the chemometric prediction by calculating a confidence interval for each 
predicted value. 

Key words: FTNIR-spectroscopy, process analysis, online-monitoring, confidence interval

Introduction 
Environmental and economical challenges of 
the future lead to increasing efforts on saving 
energy and resources in chemical industry. In 
many cases the efficiency and quality of 
industrial production processes can be 
improved by applying online analytic 
technologies. Fourier-transform-near-infrared 
(FTNIR) spectroscopy is a well-established 
method in process analytics. In this contribution 
we use such a measurement system [1] for the 
online-monitoring of critical process 
parameters. The use of chemometric algorithms 
allows the development of mathematical 
models, which represent the correlation 
between spectral data and the parameters of 
interest. This enables the prediction of a 
process parameter by applying such a model to 
new spectral data from the process. In the 
following example we predict the turbidity point 
of melamine resin at the production plant of 
company partner Dynea. Moreover we apply 
two methods to calculate confidence intervals 
for reviewing the predicted values during online-
monitoring. 

Measurement Setup 
Spectroscopic data from the process is 
continuously collected by a FTNIR-
spectrometer (i-RED) [1]. The measurement is 

conducted by a transmission probe (Hellma) 
with an optical path of 1 mm through the fluid. 
This immersion probe is connected to a 
halogen light source on the one side and to the 
spectrometer on the other side with optical 
fibers (length: 50 m). The used spectral range 
in the NIR extends from 1 µm to 2.5 µm. The 
whole system is installed at the production plant 
and connected to the process control system by 
a CANopen fieldbus link and analog input 
terminals. The particular components of the 
system are illustrated in Fig. 1. 

 
Fig. 1. Sketch of the FTNIR-setup at the production 
plant. An immersion probe is attached by optical 
fibers and the spectrometer is integrated in the 
process control system via a CANopen fieldbus 
connection. 
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Thanks to this integration into the process 
network, additional information like 
temperature, pressure and pH can be recorded 
and taken into account for analysis. Parallel to 
the continuous acquisition of spectroscopic 
data, the relevant process parameter is 
measured with a reference method, which is 
usually based on manual sampling. 

Calibration and Modeling 
In order to obtain a mathematical model 
describing the process parameter (reference 
value) by a NIR spectrum, we used 
chemometric standard methods like partial least 
squares regression (PLS). This algorithm builds 
linear regression models by calculating the 
principal components of both the independent 
variables (spectral data) and the dependent 
variables (reference measurements). This is in 
contrast to partial component regression (PCR), 
where only the variance of the spectral data is 
considered for dimension reduction [2]. The 
software tool, which was primary used for 
calibration in this contribution, is the 
PLS_Toolbox (Eigenvector Research) for use 
with MATLABTM [3]. 

Statistical modeling was performed with a 
calibration dataset, where the process 
parameter (turbidity point) was measured by the 
operating personnel at the plant. Predicting now 
the process parameter by analyzing a 
spectrum, means in simple terms to multiply the 
regression vector obtained from the model by 
the corresponding spectrum. The predictive 
power of the resulting mathematical model 
strongly depends on the utilized preprocessing 
methods as well as on the suitable selection of 
relevant spectral regions (see Fig. 2). 

 
Fig. 2. FTNIR-Spectrum of melamine resin with the 
relevant spectral regions (selected). 

The best results were achieved by applying 
standard normal variate scaling (SNV) as 
preprocessing procedure to spectral data. The 
most appropriate wavebands, which could be 

found during the modeling period, are 
highlighted in Fig. 2. 

After a period of data acquisition the measured 
reference values were correlated with the 
corresponding spectra. This was carried out 
successfully for a number of different recipes of 
the melamine resin. As the results and the 
calibration process are similar, we show the 
results of just one exemplary recipe. 

Every calibration result is cross-validated (CV) 
and reviewed (see e.g. Fig. 3) before a specific 
model is implemented online. Cross-validation 
was performed with the “leave one out” method, 
where every sample is consecutively left out 
and predicted by a model containing the 
remaining samples. Statistical variations of the 
process and the measurement conditions 
require the usage of data from a comparatively 
large number of batches for calibration. The 
model shown in Fig. 3 uses spectra and 
reference data from over 120 batches produced 
within 9 weeks, while the number of reference 
measurements per batch was between 6 and 9. 
This corresponds to around 1000 samples. 

 
Fig. 3. Cross-Validation result of the calibration 
model used for online-prediction. 

On the way to an online-implementation of a 
model there is often a lot of re-calibrating and 
validating necessary. Thereby in addition to 
cross-validation it is very useful to validate the 
model by using a test data set. Comparing 
predicted and measured values of the modeled 
process parameter is the preferable way to 
validate a model for online-application. 

Process Implementation / Online-Monitoring 
A robust and validated chemometric model 
enables the prediction of a process parameter 
by evaluation of the currently measured 
spectrum. This evaluation is computed online 
on the process spectrometer system, while the 
batch process is running. In order to 
demonstrate the capability of the system, we 
monitor the turbidity point for each individual 
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batch of the melamine resin production at 
company partner Dynea (see Fig. 4). In this 
application the turbidity point is a parameter, 
which provides information about the progress 
of the condensation process in melamine resin 
production. Monitoring the value of that 
parameter indicates the best point of time to 
turn off heating in order to stop the 
condensation. 

 
Fig. 4. Representative examples for the online-
monitoring of a process parameter (3 consecutive 
batches). 

After a period of testing and re-training, the 
obtained chemometric models for predicting the 
turbidity point turned out to be very accurate 
and robust. But the maximum predictive power 
of the applied model is naturally limited by the 
accuracy of the reference measurement. During 
online monitoring comparative reference 
measurements were performed in order to 
check the capability calibrated model. These 
have shown good accordance to the predicted 
values of the FTNIR-system, as depicted in Fig. 
5 for a single exemplary batch. 

 
Fig. 5. Predicted process parameter compared with 
reference measurements for one representative 
batch. 

The long term stability of the model in use was 
tested over several weeks. During this test the 
RMSEP (root mean square error of prediction) 

normalized to the data range of the process 
parameter was around 4%, which is 
approximately the same magnitude as the 
estimated error of the reference method. 

The range of calibration is the part of the batch, 
where condensation takes place and reference 
measurements are available. The periods 
before and after the reaction (filling of the 
reactor and cool-down phase) are not important 
for process control and therefore not covered 
by calibration. Due to the continuous spectral 
measurements one gets a predicted value of 
the process parameter for every corresponding 
spectrum, even if the process state is out of 
calibration range or if other disturbances occur. 
To get a measure for the reliability of the 
displayed value we compared two closely 
related ways to calculate confidence intervals. 

Confidence Intervals 
Even though a lot of effort has been spent in 
the recent years to predict process parameters 
by spectroscopic methods, there is only limited 
work done to estimate the confidence level of 
predicted values. Such a confidence interval 
would be beneficial, because in some cases 
one has small impurities or unforeseen 
disturbances (e.g. bubbles), which can strongly 
influence the prediction. To detect such errors 
and to verify the predicted values we used 
confidence intervals as described in [4] and [5]. 
The principle of calculating the confidence 
intervals (CI) is expressed by eq. (1) in a 
simplified form: 

2121 1 /
M

/ )D()MSE(tCI +±= α  (1)  

where MSE is the mean squared error of the 
training set and DM is a Mahalanobis distance 
measure of the current spectrum. The factor tα 
represents a value of Student’s t distribution, 
which uses the number of batches and the 
number of principal components from the PLS-
model. The value of 1-α defines the level of 
confidence (e.g. 95%) and is also included in 
the factor tα. The main difference between [4] 
and [5] in calculating the confidence intervals is 
in the different measure for Mahalanobis 
distances. The effect of these differences on 
the confidence interval appears in the varying 
slope in case of disturbances. The method used 
by PLS_Toolbox (Eigenvector Research) can 
be found in [4]. 

Figure 6 shows the confidence intervals 
calculated for the batch depicted in Fig. 5 using 
both methods. The level of confidence was set 
to 95%, which corresponds to an α-value of 
0.05. Small impurities in the probed liquid, like 
the one marked in Fig. 5 and 6, can be detected 
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and are indicated by these confidence intervals. 
Outside the range of calibration the confidence 
intervals strongly arise, resulting from high 
Mahalanobis distances of these spectra. 

 
Fig. 6. Confidence intervals (confidence level: 
95%) calculated for every predicted value over time 
with actual prediction errors. 

The actual prediction error has been evaluated 
by test measurements in the industrial process 
and it should remain between the upper and 
lower boundary of the confidence interval. 
Aside the indication of wrong predictions due to 
impurities, the confidence interval also strongly 
arises when the measured spectra are outside 
the data space of calibration (cf. beginning and 
end of batch in Fig. 6). Large values of the 
confidence interval suggest that one should not 
trust the predicted values at that state of the 
process. 

As the calculation of the reviewed confidence 
intervals is done offline up to now, the next step 
is the online-implementation and online-
validation of the shown methods. Due to good 
progress in programming the spectrometer 
system is already prepared to do the required 
calculations. 

Conclusion  
We have shown the development of a method 
to online-monitor characteristic process 
parameters in industrial production processes 
within the research project PAC. The potential 
and reliability of combining FTNIR-
spectroscopic measurements and chemometric 
analysis, was presented exemplary by 
monitoring a crucial process parameter in 
melamine resin production. 

Future prospects in this project are further 
improvement and development of the online-
analytic system and the extension of the shown 
methods to other plants and new processes. 
Developing advanced chemometric methods to 
further improve accuracy and long term stability 
of the existing system plays an important role. 

This includes research and development in the 
field of output diagnostics, like the presented 
confidence intervals. The integration of 
additional, orthogonal parameters like 
temperature or pressure in the modeling 
process is currently work in progress. 

Analyzing and monitoring industrial production 
processes with such systems enables a deeper 
understanding of these processes. Therefore 
the usage of a reliable monitoring system in 
process control often leads to improvements in 
product quality and process efficiency. 
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