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Abstract 

In this paper we report on the evaluation of an E-nose system for objective evaluation of the smell of 
sweat in shoe/socking systems by comparison with a human sensory panel. The test system is based on 
temperature cycled semiconductor gas sensors to achieve good stability for field use of the system 
without the requirement for frequent recalibration. The ultimate goal is to provide a tool for developing 
improved shoe/sock systems with optimized materials.  

The main approach to achieve this goal is to find a correlation between the assessment of a human 
sensory panel and the complex sensor response patterns of an E-nose system to appraise the smell of 
sweat in shoes and socks. Therefore a range of test persons wear shoes and socks under defined 
ambient conditions in a controlled test environment as well as during everyday use. The evaluation is 
done by comparison of the data measured by the E-nose system with two independent sensory panels, 
each consisting of six persons. The human sensory panels evaluate the smell on worn shoes and socks 
and assess the intensity of the smell of sweat and the olfactory sensation/unpleasantness for each test 
object. The paper describes the setup of the E-nose system and presents results of a first larger field test 
showing the identified correlation between our system and the human assessment of the smell of sweat. 

Motivation 

Suppression or mitigation of body odors is one of the key issues for shoe and clothes manufacturers in 
Europe to achieve a competitive advantage over low cost suppliers especially from Far East. Specifically 
the smell of sweat in shoes and socks is a major issue for consumers and manufacturers alike and will 
eventually be an essential aspect for customer acceptance. Today, only very complex studies with human 
sensory panels allow an estimation of the impact of different construction characteristics of the 
shoe/socks system, i.e. the materials used and their combinations. In this respect shoes present a major 
problem as they usually are not or cannot be washed, so that substances and microbes can accumulate 
and lead to quite severe smells.  

A collaborative project between the lab for measurement technology and two research institutes 
specialized on shoes and clothing, respectively, aims at developing a mobile test system for objective 
evaluation of the strength and unpleasantness of the smell of sweat to be used in development of shoes 
and socks, in quality control and for settling customer complaints. Preliminary studies have shown a 
correlation between the signals of an electronic nose based on semiconductor sensors and human 
perception [1]. The key will be to identify characteristic sensor response patterns for correlation with the 
assessment by a human sensory panel, a typical approach for developing an application specific 
electronic nose [2].  

Experimental methods 

The E-nose system is based on a small test chamber in which the shoe and/or socks are placed for 
evaluation, Fig. 1 [3]. Gas is pumped from inside the chamber using a probe which can be placed inside 
the shoe or socks and passes through a sensor chamber with up to eight different semiconductor gas 
sensors (SGS). To suppress unwanted influence by humidity and interfering gases, the chamber is 
flushed with pressurized clean air, which is humidified to almost saturation. In addition, the test chamber 
can be placed in a temperature chamber to suppress the influence of ambient temperature. Temperature 
and humidity in the test chamber and in the chamber for gas sensors are measured, which will allow a 
correction of the influence of ambient conditions at a later stage, i.e. by taking the temperature and r.h. 
values into account for the signal interpretation. 

As many electronic noses based on sensor arrays show a lack of stability and therefore require 
frequent recalibration, we chose to use a system based on temperature cycling which has proven highly 
stable for the detection of organic substances over several months [4]. Each sensor is controlled by an 
individual electronics board for temperature cycling and data acquisition [5] and is connected via USB to a 
laptop computer with graphical user interface based on LabVIEW, NI, for signal evaluation and 
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F ig. 1: Measurement set-up consisting of the test chamber placed in a temperature chamber, chamber for gas and humidity 

sensors, sensor electronics and graphical LabVIEW-user interface on a laptop. The test chamber is flushed with synthetic air 

of variable humidity. 
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F ig. 2: Response patterns of one semiconductor gas sensor when exposed to air, NH3 (for calibration) and the odors from 

new and worn socks and shoes, respectively. Inserts show details of the sensor response. Note that the patterns for worn 

shoes and socks are quite similar to each other, while the patterns for new shoes and socks are distinctively different and also 

different from each other. 
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interpretation. Commercial gas sensors [6] that had shown good stability and high selectivity in dynamic 
operation for other applications were used for these experiments. The temperature cycle chosen for this 
application has a duration of 40 seconds and covers a temperature range from 240°C to 420°C by setting 
three different temperature levels (420°C, 240°C, 330°C), Fig. 2.  

 Each shoe and sock was measured for 20 min. after wearing parallel to the odor assessment by a 
human sensory panel. Each experiment therefore yields 30 temperature cycles (T-Cycles), which are 
treated as individual measurements for further interpretation. After data preprocessing (i.e. normalization 
of the T-cycle data) [7], features are extracted from the cycles forming the basis for multivariate data 
analysis using standard techniques like principal component analysis (PCA), linear discriminant analysis 
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(LDA) and artificial Neural Networks (ANN) [8]. The patterns show significant differences in the zoomed 
areas like different slopes, mean values or absolute maxima. We have used the mean values and the 
slopes during different parts of the T-cycle as these features, which basically describe the shape of the 
sensor response and have proven valuable before [9]. First tests with the E-nose system had shown that 
a separation of air, new and worn shoes, respectively, was possible [3]. Furthermore, Fig. 2 shows that 
patterns of a worn shoe and a worn sock are similar compared to each other and distinctively different 
from the patterns obtained from a new shoe and sock, respectively. This indicates that the system is 
suitable for the detection of smell of sweat. 

The two project partners Prüf- und Forschungsinstitut Pirmasens (PFI) and Hohenstein Institutes (HI) 
were responsible for a large range of tests with commercially manufactured shoes and socks and also for 
the assessment of the smell with human sensory panels. In a first series of tests 96 experiments were 
made with four different shoes and three different socks both under controlled and repeatable laboratory 
conditions as well as during everyday use. These tests form the basis for the correlation between the 
human nose and our E-nose system. Shoes and socks are worn by test persons and afterwards 
assessed by the human sensory panel and measured with the E-nose system.  

Test persons at PFI were required to run or walk for one hour on a treadmill in a climate controlled 
chamber to sweat the shoes/socks under defined and reproducible ambient conditions. Test persons at 
HI on the other hand were wearing the shoes/socks for four hours under everyday conditions. The shoes 
and socks as well as the tested combinations of shoes and socks were the same for both partners.  

The sensory panels at PFI and HI consisted of 6 persons each, 3 men and 3 women. As a prior 
qualification check all persons were tested with 12 smell sticks with different everyday odors and had to 
assign at least 10 of them to the correct odor group to be eligible for the sensory panel. At each institute a 
total of 10 test persons were available so that a sufficient panel was ensured for all tests. The sensory 
panels assess the smell of both shoe and socks individually in the categories overall olfactory sensation 
(pleasant to unpleasant on a scale from -2 to 2) and intensity of the smell of sweat (on a scale from 1 to 
5). Furthermore, a detailed assessment of the categories sweet, sour and overpowering odor is done on a 
scale from 1 to 4 each. In this paper we concentrate only on the sweat odor intensity or score. The 
assessment of the panels resulted in average grades which were used as reference or nominal values for 
the correlation with the E-Nose system. Note that most experiments yielded a standard deviation of the 
odor score of .4 showing that the assessment by the sensory panel is itself not a very exact process. 

Both the E-nose measurements and the assessment by the human sensory panels were repeated one 
day and six days after wearing to determine how the sweat odor of shoes and socks changes over time. 
Shoes and socks are individually stored in plastic bags during storage to suppress unwanted influences 
from the outside during that duration. 

Results 

Preliminary tests with a standard E-nose system indicated that assessment of the smell of sweat 
seemed possible [1]. First experiments with our setup had shown that a separation of air, new and worn 
shoes, respectively, is possible [3]. Furthermore, Fig. 3 shows that an LDA projection based on the E-
nose measurements of new and worn shoes as well as NH3 as calibration gas (Fig. 3, left) applied to new 
and worn socks yields a separation of the shoes with a classification in good agreement with the training 
data (Fig. 3, right). All tests with new socks are projected into the same area as that obtained for new 
shoes, the majority of the measurements with worn socks is projected into the area for worn shoes with 
only relatively few misinterpretations in the borderline regions for new and NH3, respectively. This can 
also be seen from the raw T-cycle data, which are similar for worn shoes and socks and distinctively 
different from the patterns obtained from a new shoe and sock, respectively, as shown in Fig. 2 [7]. This 
indicates that the system is suitable for the detection of smell of sweat, because the underlying matrix is 
of minor importance compared to the sweat odor.  

However, this quality is only achieved using LDA as a tool for dimensionality reduction as shown in 
Fig. 4, comparing PCA and LDA for a small number of experiments. In both cases, the T-cycle data for six 
experiments with worn shoes were used for the projections. The experiments were selected based on the 
sweat odor intensity as determined by the human sensory panel: only shoes with an odor score of 1.3, 
2.3 or 3.3 were selected in order to achieve a tight grouping of the experiments with a good separation 
between the groups with different odor scores. Fig. 4 left shows that the unsupervised PCA yields six 
groups corresponding to the six different experiments with no correlation to the odor score (experiments 
with scores of 2.3 are scattered over the whole plot). The LDA projection on the other hand (Fig. 4, right), 
shows a tight clustering of the experiments with the same odor score and good separation between the 
groups as desired. The supervised LDA is mathematically optimal for this type of classification or better 
separation [8]. It is interesting to note, that the separation is basically along the first discriminant function 
(DF1) and that the odor score correlates to the DF1 value (in this case, a higher odor score leads to a 
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F ig. 3: Left: !"#$%&'()*+,'-$.)%/&/+,-0$+1)$+1&))$0&'2%.$3-)4$.1').56$34'&-$.1').5 and NH3 (calibration);  

right: LDA projection with the LDA coefficients obtained from the shoes/NH3 data, showing a separation between new and 

worn (i.e. smelling of sweat) socks based on the same sensor response features. This indicates that the E-nose is capable of 

identifying the smell of sweat independently of the type of test object. 
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F ig. 4: Comparison of PCA (left) and LDA (right) projections for six different experiments with worn shoes. For this only 

shoes with an odor intensity score of 1.3, 2.3 or 3.3, respectively, were selected. While the PCA projection shows six 

scattered groups (one for each shoe) with no correlation to the odor intensity, the LDA projection again shows a clear 

correlation between the odor intensity and DF1 allowing a classification of the odor intensity as evaluated by the human 

sensory panel.    

-1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6
-0,2

0,0

0,2

sweat odour 

intensity

 1.3

 2.3

 3.3

 

 

p
ri

n
c
ip

a
l 
c
o

m
p

o
n

e
n

t 
2

principal component 1

-20 -15 -10 -5 0 5 10 15 20 25 30

-4

-2

0

2

4

 

 

sweat odour 

intensity

 1.3

 2.3

 3.3

d
is

c
ri

m
in

a
n

t 
fu

n
c
ti
o

n
 2

discriminant function 1

 new socks

 worn socks

-8 -6 -4 -2 0 2 4 6 8 10

-4

-3

-2

-1

0

1

2

3

4

5

6

NH
3

worn 

 

 

d
is

c
ri

m
in

a
n

t 
fu

n
c
ti
o

n
 2

discriminant function 1

new

lower DF1 value). This seems to indicate that the DF1 of a suitable LDA projection can be used to directly 
predict the odor score by using a linear transfer function. This could already be shown in the past for the 
determination of a gas concentration based on LDA projections for ozone measurements [10]. 

The results of the LDA projection with a limited number of test data shown in Fig. 4 suggests that a 
correlation between the PCA projection along one axis and the odor score can be found thus allowing an 
easy prediction of the sweat odor intensity using a linear function based on the gas sensor data. This was 
tested using the data of all 96 experiments performed at HI, i.e. after wearing all four shoes in all 
combinations with the three different socks and testing shoes and socks separately, also for left and right 
foot. Fig. 5 shows the result of an LDA projection using the rounded odor score as obtained from the 
human sensory panel as reference data (left). This time the groups are much less well defined and a 
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F ig. 5: Left: LDA projection of all tests of shoes worn in daily use at Hohenstein Institutes. The intensity of the sweat odor 

was evaluated by the human panel on the first, second and seventh day after wearing (total: 96 tests); the parallel 

measurements of the E-nose system (approx. 30 temperature cycles for each test) were classified according to this intensity 

on a scale of 1 to 4 (the level 5 was not reached in the tests). The odor intensity shows a good correlation with the first 

discriminant function (DF1) for the levels 2 to 4. Odor intensity class 1 and 2 are additionally separated along the second 

discriminate function (DF2)  

Right: the score diagram for DF1 shows nearly Gaussian distribution for all four odor intensity classes. 

-3 -2 -1 0 1 2 3
0

10

20

30

40

50

60

70

 

 

sweat odor

 intensity

 1

 2

 3      

 4

h
it
s

discriminant function 1

large overlap between the four classes is evident, but a general trend or correlation between DF1 and the 
odor score is still evident. The large number of data points results from the approx. 30 T-cycles obtained 
from each experiment, which are treated as independent data for this projection. However, DF1 would not 
be sufficient to separate the groups alone, as the groups for odor score 1 and 2 show a strong overlap 
along DF1, but a slight shift along DF2. When looking at the score distribution of the DF1 values, i.e. 
number of results with a DF1 value in a certain range, the data show an almost Gaussian distribution for 
all four groups along DF1, Fig. 5, right. This would indicate a large uncertainty for determining the odor 
score based on this approach when using the DF1 value to predict the sweat odor intensity. However, 
one has to take into account that the data themselves are very noisy: the human sensory panel odor 
val!"#$%&'(&$ )*"$ !#"+$ )#$ ,-.',)/$ -*$ *"0"*",("$ 1)/!"#$ 0-*$ 2&"$ 32*)',',45$ -0$ 2&"$ 678$ 9*-:"(2'-n have a 
standard deviation of .4. In addition, rounding these values to the next full score to separate the data into 
only four groups means that odor scores which are really very similar (i.e. 2.3 and 2.5) are classified as 
belonging to groups 2 and 3, respectively. Therefore, the expectation should not be too high for this 
approach as the underlying reference itself is not very exact. The problem of adjacent odor scores being 
inserted in separate classes could be improved by using only data close to the class center value for 
determining the LDA projection, compare Fig. 4, right.  

We have also tested the overall correlation between the human sensory panel and the prediction of a 
simple artificial neural network (ANN). Only eight relevant features, which were selected based on 
experience and manual assessment of the patterns, were extracted from the response patterns for the 
evaluation to prevent overtraining the network. The ANN was a simple feedforward type trained with a 
standard backpropagation algorithm using a commercial software tool [11]. The odor score obtained from 
the human sensory panel was used as nominal output for training. Fig. 6 left shows the overall correlation 
for all temperature cycles of a single sensor over the 96 different experiments with shoes and socks 
during everyday use. Approx. 2/3 of the data was used for training, the rest as test set to evaluate the 
ANN performance. It is evident, that for this again simple way of data evaluation and interpretation a good 
correlation is achieved. Most of the ANN predictions are in the corridor around the ideal output correlation 
which is defined by the standard deviation of the human test panel assessment. 

In further tests with different sensors and more elaborate data evaluation using more features and 
more sophisticated evaluation techniques, this result should be further improved and tested. In further test 
series, the system will be tested with completely different shoes and socks. We hope to prove that the 
system is able to provide objective assessment of the smell of sweat for this specific application. 
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F ig. 6: Left: output of an artifical neural network (ANN) based on the E-nose data of shoes and socks measured on the first, 

second and seventh day after wearing at Hohenstein Institutes; the network was trained to predict the odor assessment by the 

human sensory panel. The training data set consisted of all samples with odor scores of the green values show the training 

data, the blue values are evaluation data; the training data are between 1 and 1.33, between 1.83 and 2.33, between 2.83 and 

3.33 and  between 3.83 and 4 (higher sores were not obtained). The test data consist of all other samples with odor scores of 

1.5, 1.66, 2.5, 2.66, 3.5 and 3.66. A fairly good correlation and prediction of the odor intensity by the ANN is evident. 

Right: assessment of sweat odor intensity by test person 1 compared to the mean value of the odor assessment by the test 

panel consisting of 6 test persons; a relatively large variance is evident.    
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Conclusion 

The hardware of a mobile E-nose system based on a single semiconductor gas sensor was developed 
for objective evaluation of smell of sweat in shoes and socks. The assessment of a human sensory panel 
was correllated with the sensor signals obtained from the E-Nose system. For this purpose shoes and 
socks were sweated by several test persons and assessed afterwards by a human sensory panel as well 
as measured with the E-nose system. Good correlation within the standard deviation obtained by the 
sensory panel was achieved both with linear discriminant analysis as with artificial neural networks.  
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