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Abstract: 
We present a theoretical analysis of micro-/nanocantilever based sensors for detection of a particle in 
vacuum and in viscous fluid. Ultra-high sensitivity detection in fluid will provide better understanding of 
realistic behavior of molecules and biomolecules in a native environment. We derive simple 
expressions for the resonant frequency shift accounting for an attached mass in vacuum and viscous 
fluid. We show that by detecting the first flexural and torsional modes of the cylindrical cantilever (e.g. 
carbon nanotube or nanowire) the attached mass and position can be accurately resolved. For other 
cantilever geometries (i.e. rectangular shape, V-shape, etc.) two flexural and torsional modes are 
needed to determine the mass and the position of the attached particle. 
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Introduction 
Micro-/nanocantilevers have potential 
application as highly sensitive sensors for 
biological and macro-molecule detection [1]. A 
particle attached on cantilever can be detected 
indirectly by measuring the frequency shift of 
the cantilever [2]. The resonance frequency 
shift depends on the attached mass and the 
position of attachment [3]. We have recently 
shown that the particle mass and the 
longitudinal position can be resolved by 
measuring three consecutive flexural resonant 
frequencies [4]. This method works well in 
vacuum or in air, where higher vibrational 
modes can be easily found. 

However once the cantilever is immersed in 
fluid, most often just first two resonant 
frequency can be detected [5]. The purpose of 
this paper is to perform a complete theoretical 
analysis for the cantilever of an arbitrary shape 
operating as mass sensor in vacuum and 
viscous fluid and to suggest a high sensitive 
method for the mass and position detection in 
fluid. 

Theory 
A classical beam theory is used and model is 
developed for a cantilever of an arbitrary cross 
sectional area but which is uniform along the 
entire cantilever length. The fluid, in which the 

cantilever operates, is incompressible. The 
attached nanoparticle or macro-molecule is 
modeled as a point mass (mp) with a moment of 
inertia J0 (J0 ≈ mp[(Tc/2)2 + y2]) attached on the 
cantilever, as illustrated in Fig. 1. 

 
Fig. 1. The sketch of the cantilever  

with attached nanoparticle 

Flexural modes 
The flexural oscillations of the micro-
/nanocantilever in fluid are described by [6] 

MD
2 FFwwa ttxxxxc +=+ , (1) 

where ac = [EcIc/(ρcAc)]0.5, w, Ec, Ic, ρc, and L are 
the flexural displacement, the elastic moduli, 
the second moment of inertia, the density and 
the length of cantilever, respectively; FD, and FM 
are the driving force per unit length and 
hydrodynamic force of the surrounding fluid per 
unit length. To close the statement of the 
problem the following boundary conditions are 
imposed: 
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The attached mass is accounted for through the 
so-called “matching conditions” at the position 
of the attachment [4]: 
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where h– and h+ denote the location to the left 
and to the right of the particle. 

Solving Eq. (1) in absence of the driving and 
hydrodynamic forces gives the flexural resonant 
frequencies in vacuum [4]: 
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where F(z) = sinh z cos z – cosh z sin z, ε = 
mp/M is the mass ratio, h* = h/L, and M is the 
mass of the cantilever. 

For small mass ratios (ε << 1), the flexural 
frequency shift caused by an attached mass 
can be found by perturbation method [7]. They 
are given by [4] 
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where αf(h*, γ0n) = {F(γ0nh*) – F[γ0n(1 – h*)] + 
sinh γ0n cos (γ0nh*) cos[γ0n(1 – h*)] – sin γ0n  
cosh (γ0nh*) cosh [γ0n(1 – h*)]}/2F(γ0n) and γ01 = 
1.875…, γ02 = 4.694…. . The functions αf(h*, 
γ01) and αf(h*, γ02) are shown in Fig. 2. 

Torsional modes 
The torsional oscillations of the micro-
/nanocantilever in fluid are known [6] and read 

MD
2 TTc ttxxc +=−ϕϕ , (7) 

where cc = [GcJ/(ρcIPc)]0.5, φ, Gc, J, Ipc, are the 
rotating angle, the shear moduli, the torsional 
constant, the polar moment of inertia. TD and TM 
are the driving and surrounding fluid torques 
per unit lengths. Similarly to the flexural modes, 
the following boundary and matching conditions 
are imposed: 

00 == Lxϕϕ  (8) 

and 
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Analogous to the flexural modes, the torsional 
frequency shifts in vacuum due to the attached 
mass are given by 
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Accounting for ε << 1, the torsional frequency 
shifts due to the attached mass can be 
expressed through the unloaded cantilever as 
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where αt(h*, ν0n) = (–1)n+1sin (ν0nh*) cos[ν0n(1 – 

h*)], ν0 = (2n – 1)π/2 and 
2

,0 Wy∈  . The 

functions αt(h*, ν01) and αt(h*, ν02) are also given 
in Fig. 3. 

It should be emphasized here that in fluid, ffn 
and ftn are just the flexural and torsional 
resonant frequencies in fluid, respectively [6]. 

 

 
Fig. 2. The variation of the functions αf(h*, γ01) and 
αf(h*, γ02) for various h*. 

 

Determining attached mass and position 
The frequency shifts given by Eqs. (6) and (12) 
depend on the mass ratio ε and the position of 
attachment through coefficients α. It is evident 
from Figs. 2 and 3 that for a given particle 
mass, the first and second vibrational modes 
are different from each other. This allows one to 
resolve mass and position by considering the 
ratios Гf = αf (h*,γo2)/αf(h*,γo1) and Гt = 
αt(h*,νo2)/αt(h*,νo1) as is shown in Fig. 4. 
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Fig. 3. The variation of the functions αt(h*, ν01) and 
αt(h*, ν02) for various h*. 

 

 
Fig. 4. Ratios of the torsional (Гt) and flexural 
modes (Гf) for different positions, respectively. 

 

For the same particle position the ratios of Гf 
and Гt are different from each other. Hence the 
molecule mass and position can be determined. 
As seen in Fig. 4, two cases can be realized: i) 
Гf > 1, where two flexural and one torsional 
modes allows one to determine particle mass 
and position; ii) Гf ≤ 1, where the second 
torsional mode is needed. Hence the mass and 
position can be determined. As an example we 
consider Δff1/ff1 = Δff2/ff2 = 0.01 and Δft1/ft1 = 
Δft2/ft2 = 0.1. From the flexural modes, two 
possible molecule position of h* = 0.636 or 1 
can be obtained (see Fig. 2). Since Гt = 1 only 
at h* = 1, the particle position and the coefficient 
αf(1,γo1) = 1 can be resolved. By substituting the 
value of coefficient αf into the Eq. (6), the 
desired mass ratio of εf = 0.005 is found. 
Substituting the determined values of the 
attached mass (mp) and longitudinal position (h) 
into the Eq. (12) and accounting for Δft1/ft1 = 0.1 
allows us as well to find the two possible y-
locations of the attached particle. 

The above analysis becomes much easier 
when the cantilever has a cylinder shape with a 
diameter of D (e.g. carbon nanotube or 
nanowire). Then moments of inertia of the 
single-particle and cantilever are given by 

2
0 )2/(DmJ p≈ , (13) 

32/4DLJ cc πρ≈ , (14) 

and consequently, the frequency shift given by 
Eq. (12) yields 
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As can be seen from Eqs. (6) and (15), the 
frequency shifts for both the flexural and 
torsional modes depend only on the mass ratio 
ε and the position of attachment through 
coefficients α. We emphasis here that these 
coefficients for first flexural and torsional mode 
are different from each other as shown in Fig. 5. 
Introducing the ratio between torsional and 
flexural mode Г (see Inset of Fig. 5) as 

),(/),( 01
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the mass and position of the attachment can be 
resolved from measurement of only the first 
flexural and torsional modes. As an example 
suppose that the measured frequency ratios are 
Δff1/ff1 = 0.1 and Δft1/ft1 = 0.01. By using the Eq. 
(16) and inset of Fig. 5, the position of the 
attachment h* = 0.5 is found. From Fig. 5, the 
coefficients α (e.g. αt = 0.4) are obtained, and 
consequently, the mass ratio ε = 0.013 is found. 

Conclusions 
We derived simple analytical formulas for the 
frequency shift of the cantilever operating in 
flexural and torsional mode caused by an 
attached particle (e.g. macro-molecule, gold 
nanoparticle, etc.) at an arbitrary location. We 
show that the mass and position of the 
attachment can be resolved for an arbitrary 
shape of the cantilever by measuring the first 
two flexural and torsional modes. In case of the 
cylindrical cantilever the mass and position can 
be determined by using only the first flexural 
and torsional modes. 
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