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Introduction 
One major problem of optical 3D measurement methods like structured light projection or computer to-
mography is the size of the resulting scans. For example, a medium-sized CT data set with a resolution of 
1000 × 1000 × 1000 voxels and a standard bit depth per voxel of 16 Bit takes 1.9 GB. Hence, much effort 
has to be spent to carry out the measurement, to archive the data, or to transmit the scans to other manu-
facturing units. A remedy for this problem is the compression of the recorded point clouds. In contrast to 
previous research work, where we proposed a method for lossless compression of computer tomography 
point clouds [1], this paper provides lossy compression techniques to achieve higher compression rates. 
Fourier Descriptors are introduced in [2], to provide a compact representation for 2-dimensional shapes. 
In [3], Kim adopted this method to a lossy compression scheme for 3D-digitized engineering components. 
The key aspect of this method is to represent a point cloud by a series of periodic base functions. For 
this, the 3D model is divided into N slices and each point (xn, yn) within slice n is considered as complex 
value. The points on each slice form a continuous 2D-shape contour. This contour is transformed from 
the geometric domain to the frequency domain by applying the Fast Fourier Transform (FFT). In the fre-
quency domain, the information of the signal is concentrated in very few elements. This implies that the 
absolute values of most Fourier coefficients are extremely small compared to the signal energy. Setting 
these coefficients to zero and keeping only values above a certain threshold implies only small changes 
in the signal and small compression errors. The remaining Fourier coefficients are referred to as Fourier 
Descriptors (FD). The method yields a distinct compression of the initial 3D shape model—Kim reported 
compression rates of 88.5 up to 95 percent compared to 55 percent in [1]. The initial 3D shape model can 
be recovered by retransforming the Fourier descriptors to the geometric domain. 
 
Background 
The key aspect of geometrical Fourier analysis is to represent the scanned data by orthogonal basis func-
tions. For the 2-dimensional case, we consider a discrete sequence f(n) that is sampled from a continu-
ous function. The Discrete Fourier Transform (DFT) is defined by 
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with N as number of samples and w = 0, 1, …, N − 1 are the respective frequencies in the frequency do-
main. Consider that each 2D point (x(n), y(n)) of a given 2D contour can be represented by a complex 
number z(n) = x(n) + j 3 y(n). The complex Fourier Descriptor (FD) of the shape is defined by 
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For shapes, where each point is a function of the angle ϕ and r (i.e. there are no re-entrant angles), (2) 
can be denoted in the polar form as 

 ( ) ( ) ( )( ) ( )Nnwr
N

wF
N

n
nn πϕϕ 2jexpjexp

1 1

1

−⋅⋅= �
−

=

. (3) 

Figure 1 shows an example of this angular parameterization of a shape. If the object is rotated by an a 
constant angle ϕ 0, it can be shown that the initial FD F(w) changes to F'(w) = F(w) 3 exp(jϕ 0). We can 
eliminate this rotation, by taking the absolute value of the FD and have |F'(w)| = |F(w)|. This provides a 
rotation-free representation of the initial object. Applying the modulation theorem [4], we can derive that 
F(w − 1) = ��{r(ϕ)}, i.e. we can discard the angular factor exp(jϕn) of the polar form in (3), because this 
factor only applies a circular shift of the Fourier coefficients in the Fourier domain. We result in the final 
equation for rotation-free angular-parameterized FD, which is simply the Fourier transform of the radii: 
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Figure 1: Angle representation of an object. 

 
Proposed Method 
In this chapter, we expand the theory of Fourier descriptor to 3 dimensions. In [2], Kim extends the 
r = f(ϕ )-parameterization to r = f(ϕ /z), which are the 3D polar coordinates. The point cloud is separated 
into several 2-dimensional N slices with thickness dz and each of the slice is treaded as a 2D shape (see 
Figure 2). We denote this type of FD as Cylindrical Fourier Descriptor to distinguish it from 2D-FD and the 
spherical FD. The cylindrical FD is defined by 
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To incorporate also interrelations on the z-axis, we introduced a modified cylindrical FD that is computed 
by a 2D-FFTand is given by 
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These 2 descriptors are well suited to represent cylindrical objects: For example, consider a regular cylin-
der with centroid (0 0 0)T and radius r = 1. The resulting FD C1 and C2 are given by 
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which is a distinct reduction of redundancy of the shape representation. An obvious method to represent 
sphere-like objects is the spherical representation i. e. by parameterize the shape by r = f(ϕ /θ). This 
Spherical 3D Fourier Descriptors is denoted by 
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As for the C2, we also apply a 2D-FFT on the extracted radii. Figure 2 provides a visualization of both 
types of 3D-FDs. 
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Figure 2: Cylindrical and spherical parameterization. 
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Experimental Results 
To evaluate our method, we used point clouds from 3 different scanned shapes: The first is a spacer, 
whose surface contains of several connected and intersected regular planes. The second is a bevel gear, 
which has neither a cylindrical nor a spherical, but a conical shape. Apparently, the surface of the gear 
has higher frequency elements than the other shapes. The third component is a molding cast. It was se-
lected to evaluate the selected descriptors on free-form elements. We have selected the models from [5]. 
Due to re-entrant angles, it is not possible to generate cylindrical FDs of the molding cast and hence, only 
results of the S-FD are available on the last shape. 

 
Figure 3: Experimental Data. a) Spacer, b) bevel gear, c) molding cast. 

The number of extracted point has been fixed to 6000 to make the results comparable. In the first step, 
the points are parameterized using the proposed methods of the previous chapter. For the descriptors C1 
and C2, the result is a matrix with ϕ indicating the rows, z the columns, and the radius r are the elements 
of the matrix. S is organized in the same way with respectively the elevation angle θ  as column index. 
After applying the Fourier transform of the corresponding descriptor on the data, the magnitude of the 
higher frequency coefficients are extremely small compared to lower frequencies. If these coefficients are 
discarded, the original signal (i.e. the point cloud) only changes slightly. Of course, discarding too many 
frequency coefficients effects in compression artifacts in the point-cloud signal. In this paper, we dis-
carded the high-frequency coefficients by setting the corresponding matrix element to zero. Each fre-
quency element is quantized using 4 Bytes. For an additional compression improvement, we arranged the 
matrix in a zigzag manner and applied both run length [6] and entropy encoding [7]. 
 

Table 1: Experimental Setup 

Object Type 
Size x /y / z 

[mm] 
Extracted 

points 

Resolution 
C-FD 
[ϕ / z] 

Resolution 
S-FD 
[ϕ / θ ] 

Spacer Regular, 
cuboid  60 x 40 x 35 6000 200 x 30 80 x 75 

Bevel 
Gear Conical 200 x 200 x 

100 6000 200 x 30 80 x 75 

Molding 
cast 

Free-
form 28 x 39 x 9 6000 200 x 30 80 x 75 

 
Table 2 to Table 8 give the results of the compression experiments. We gradually discarded 0 percent to 
99 percent of the extracted Fourier descriptors and reconstructed the point clouds. Even, if any FD coeffi-
cient is discarded, we obtained a distinct compression caused by the quantizing operation and the follow-
ing encoding steps. The peak error can be displayed by the peak-signal-to-noise-ratio (PSNR) that de-
scribes the ratio between the maximum possible power of a signal and the power of the compression 
artifacts. To measure the average error of each scanned point within the point cloud, we evaluate the 
uncertainty of each measured point by computing the standard deviation. All setups have to be compared 
on equal compression rates. 
The 1D-FFT cylindrical FD C1 outperforms the 2D-FFT C2 at almost all setups. At same compression 
rates, the standard deviation of C2 is higher than C1. Hence, it is not possible in praxis to increase the 
compression efficiency of cylindrical FDs by the 2D-FFT approach, although equation (7) assumes this. 
Applying the S-FD yields an additional improvement in compression rates. The spherical 
ϕ /θ−parameterization suffers less from discard FD coefficiants with lower magnitudes, especially on the 
bevel-gear shape. 
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Table 2: Spacer C1 

Remaining 
points [%] 

Compression 
rate [%] 

PSNR 
[dB] 

Std. dev. 
[mm] 

100 86.4 129.7 0.0166 

90 86.4 129.7 0.0166 

75 86.7 128.8 0.0175 

50 88.4 122.5 0.0252 

25 91.6 105.5 0.0667 

10 95.1 82.8 0.2467 

5 97.2 70.2 0.5104 

1 99.2 43.6 2.3624 
 

Table 3: Spacer C2 

Remaining 
points [%] 

Compression 
rate [%] 

PSNR 
[dB] 

Std. dev. 
[mm] 

100 55.8 159.2 0.0030 

90 57.2 118.4 0.0318 

75 61.7 100.7 0.0884 

50 71.4 87.7 0.1869 

25 85.0 77.7 0.3318 

10 92.4 70.8 0.4936 

5 95.6 66.0 0.6405 

1 98.7 49.8 1.6643 
 

 
 

Table 4: Spacer S 

Remaining 
points [%] 

Compression 
rate [%] 

PSNR 
[dB] 

Std. dev. 
[mm] 

100 65.2 203.4 < 0.0001 

90 89.2 95.3 0.0300 

75 89.2 95.3 0.0300 

50 90.0 93.3 0.0340 

25 92.3 87.0 0.0490 

10 95.7 81.5 0.0670 

5 97.3 76.4 0.0900 

1 99.1 57.2 0.2730 
 

Table 5: Bevel gear C1 

Remaining 
points [%] 

Compression 
rate [%] 

PSNR 
[dB] 

Std. dev. 
[mm] 

100 71.7 151.0 0.0149 

90 71.7 151.0 0.0149 

75 71.7 151.0 0.0149 

50 76.2 114.3 0.1231 

25 85.0 94.0 0.3949 

10 91.8 79.3 0.9220 

5 95.0 66.9 1.8852 

1 95.1 46.9 5.9406 
 

 

Table 6: : Bevel gear C2 

Remaining 
points [%] 

Compression 
rate [%] 

PSNR 
[dB] 

Std. dev. 
[mm] 

100 59.2 178.3 0.0031 

90 60.3 103.7 0.2256 

75 63.8 88.1 0.5537 

50 72.2 74.6 1.2078 

25 83.6 64.2 2.1938 

10 91.7 57.4 3.2445 

5 94.8 54.1 3.9362 

1 98.3 50.2 4.9037 
 

Table 7: Bevel gear S 

Remaining 
points [%] 

Compression 
rate [%] 

PSNR 
[dB] 

Std. dev. 
[mm] 

100 64.2 170.3 0.0038 

90 65.1 140.6 0.0207 

75 67.8 124.1 0.0539 

50 74.9 109.0 0.1282 

25 84.5 95.2 0.2843 

10 91.2 83.2 0.5668 

5 94.5 74.4 0.9397 

1 98.1 58.1 2.4142 
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Table 8 Molding Cast S 

Remaining 
points [%] 

Compression 
Rate [%] 

PSNR 
[dB] 

Std. dev. 
[mm] 

100 64.4 144.7 0.0030 

90 64.4 144.7 0.0030 

75 65.1 141.0 0.0037 

50 70.3 130.2 0.0069 

25 80.4 118.3 0.0138 

10 90.3 108.6 0.0240 

5 94.3 94.5 0.0544 

1 97.9 64.9 0.2979 
 

 
When discarding more than 99% of all FD coefficients, the compression artifacts becomes visible for the 
human eye. Figure 4 provides a graphical survey of different decimation ratios on the spherical FDs of the 
gear shape. Notice that the more the figure changes to sphere, the more coefficients we discard. If only 
one single S-FD coefficients is kept (i. e. the DC component of the radii), the result would be a sphere 
with a radius that is defined by this coefficient. 

 

 
Figure 4: Compression errors by discarding S-FD coefficients. Discarding: 
 a) 0% of the FD-coefficients, b) 97.5%, c) 99%, d) 99.5%, e) 99.75%, f) 99.9% 

 
Conclusion and Outlook 
We presented 3 different adaptations of Fourier Descriptors to deal with 3D point clouds. Experiments 
with 3 scanned objects showed that Fourier-based compression techniques provide a considerable com-
pression of the initial point clouds and cause only moderate compression artifacts. Among all applied 
descriptors, the S-FD was the best on the all tested shapes. A problem that has still to be solved is how to 
deal with re-entrant angles. Future research will focus on enhancing the concept of spherical FDs to 
Spherical Harmonics. 
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