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Abstract:

A leaky Lamb wave sensor is based on the principle of multiple mode conversions in an acoustic 
waveguide. An initial ultrasonic Lamb wave propagates on a plate, but leaks energy to an adjacent 
liquid. Therein the exited wave propagates zigzag between the radiating and a second plate. At each 
reflection it partly reconverts, leading to a characteristic fingerprint in the received signals which has to 
be evaluated. Therefor a new method will be presented taking into account that all the liquid’s state 
variables (sound velocity, density, temperature and viscosity) are influencing the received signal 
parameters. Additional aspects of this contribution are the parameterization of dispersion relations and 
the estimation of uncertainty in the measurement of sound velocities with the new method.
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Introduction

If an industrial process requires an evaluation of 
a liquid’s composition or quality, ultrasonic sen-
sors may be a good choice as they combine 
lots of features in one device: They have short 
reaction times, are precise, need low main-
tenance, are compact in size and don’t have 
moving parts. In pipe solutions there is no need 
to change its cross section. Nevertheless it is 
possible to measure the concentration of com-
ponents in solution, or to quantify the quality/
purity of a mixture. The key feature of ultrasonic 
waves is that they can be excited in such a way 
that they even make use of the sensors 
boundary. This could be the wall of the pipe or 
the plate of a purpose built ultrasonic sensor. 
The latter will be the focus of this contribution.

Leaky Lamb Waves in an Acoustic 
Waveguide

The presented Leaky Lamb wave sensor is 
based on the principle of multiple mode conver-
sions in an acoustic waveguide (Fig. 1). An 
initial ultrasonic Lamb wave propagates on a 
solid plate, but partly leaks energy to an 
adjacent liquid. Therein the exited Leaky wave 
propagates zigzag between the radiating plate 
and a second plate which is spaced a few 
millimeters away parallel to the first plate. At 
each non specular reflection the Leaky wave 
partly reconverts to a Lamb wave which 
enables us to measure the arrival time and 
amplitudes of several wave packages on both 
plates [1].

During its propagation through the sensor the 
wave package has different velocities. In the 
plate it propagates with energy velocity grc
whereas the angle for the radiation of the Leaky 
wave and its nonspecular reflection is mainly 
determined by the lesser phase velocity phc . As 
a consequence, a ray model for calculation of 
the liquid’s sound velocity Fc has to take both, 
phase and energy velocity of the plate into 
account. The fundamental formula for these ray 
models is the definition of the Rayleigh angle

( )R F pharcsin c cθ = . (1)

Therewith, the times of flight can be easily cal-
culated by trigonometric considerations. Apart 
from that the amplitudes of the reconverted 
wave packages have to be determined. There-
for the reciprocity relation has to be formulated 
for the specific inhomogeneity of the radiated 
and reradiated waves. A good starting point for 
these calculations is in [2]. Following the ideas 
of Jia in [3] we could find analytical expressions 
for some amplitude ratios.

Dispersion relations

A basis for a proper sensor design as well as 
modeling of Lamb wave propagation and 
radiation of Leaky waves are the dispersion 
relations, that means frequency dependent 
functions for ( ) ( )ph gr, c cω ω , and for ( )0α ω - the
attenuation of the Leaky Lamb wave in the 
plate. A short derivation of the Leaky Lamb 
wave equation can be found in [4].
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Let k be the wave number, ω the angular 
frequency, and 2b the thickness of the plate 
(substrate), then the characteristic equation is
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Therein, ρ is the density of the plate, Lc and 

Tc are the sound velocities of the longitudinal 
and shear waves in the plate and SZ is its
radiation impedance. It is known e.g. from 
Pavlakovic in [5] and is
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Therwith both, the density Fρ and the sound 
velocity Fc of the adjacent fluid influence the 
propagation of the Lamb waves. 

It is possible to find pairs of ω and k that solve 
the characteristic equation (2). The phase 
velocity then is the ratio of these two quantities: 

ω=Phc k . Fig. 2 shows the numerical deter-
mined dispersion curves for a 1.5 mm one-
sided loaded steel plate at room temperature 
(Young’s modulus =196.24E GPa, Poisson 
ratio ν =0.3 , density ρ = 38000 kg m ). 

With little modifications of (2) it is also possible 
to find energy velocities and attenuation factors, 
but the computational effort for finding the 
dispersion curves is mentionable high. This is 
why the authors suggest a parameterization of 
the numerical determined results.

Fig. 2. Calculated dispersion curves (black lines) 
and region of mode excitation (gray shadowed zone) 
for a 1.5 mm one-sided loaded steel plate.

Therewith it is adequate to parameterize phase 
and energy velocity as well as damping of the 
Lamb wave as a function of frequency, the 
liquid properties, temperature and the sensor 
dimensions. The simplified model should be
close to reality but also simple enough for 
microcontroller based computing. We compared
the simplified model with exact calculations and 
found all parameterized values closer than 
0.1% to the numerical determined values. Fig. 3 
shows a histogram of the remaining sound 
velocity deviations over the entire temperature 
and liquid property range.

Fig. 3. Differences between calculated and para-
meterized phase (left) and group velocities (right).

S0

A0

Fig. 1. Schematic of the waveguide sensor with zigzag propagation direction of the Leaky Lamb wave 
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Measurement Setup and Signals

The measurements were made with a commer-
cial available LiquidSens Probe Sensor (Fig. 4). 
For examination of temperature dependencies 
the whole setup was put into an oven, while the 
liquid under test (LUT) was stirred by a 
magnetic stirrer.

Fig. 4. Photograph of the acoustic waveguide 
sensor – here in a typical laboratory configuration.

The presented waveguide sensor is driven in 
such a way that mainly the antisymmetric mode
(A0) is excited. This can be done by choosing 
an appropriate burst excitation (center frequen-
cy and duration, see activation region in Fig. 2).
The results are received signals with well 
separated signal packages on each plate. 
Therewith it is possible to analyze liquids with 
sound velocities from 600 to 2000 m/s.

Fig. 5. Some characteristic signals and a selection 
of representative signal parameters that are part of 
the acoustic fingerprint. Black: Plate with trans-
mission; Gray: On the opposite site of transmission.

The radiation angle Rθ as well as the propa-
gation speeds, damping and coupling of the 
Lamb waves highly depend on the liquid 
properties to be measured. Therewith each 
liquid leaves a characteristic pattern in the 
received signals.

The Acoustic Fingerprint

The first step in the liquid property measure-
ment is to determine characteristic signal para-
meters such as times-of-flight ( )0, nt t∆ , ampli-
tudes ( )0 1

ˆ ˆ, ,u u … and center frequencies cf (we 
denote this as the acoustic fingerprint). Fig. 6 
shows some abstract fingerprints of selected 
liquids for different temperatures:

Fig. 6. Comparison of some acoustic fingerprints 
for different liquids at different temperatures.

It is mentionable that the fingerprint within a 
liquid does only change slightly with ambient 
conditions whereas fingerprints of different 
liquids are completely different.

The second step now is to read these acoustic 
fingerprints and translate them to the LUT’s 
state variables which have significance for the 
process. These variables are the sound velocity 

Fc , the density Fρ , the viscosity Fη and the 
liquid’s temperature Fϑ . Fig. 7 shows the 
extracted signal parameters in comparison to 
the most affine state variables.

The time of flight 0t shows good correlation to 
the temperature Fϑ if the liquid remains the 
same. The time-difference nt∆ seems to be 
inverse proportional to the sound velocity Fc
whereas the amplitude ratio 1 0ˆ ˆu u correlates 
with the specific acoustic impedance F F FZ cρ=
of the liquid. Finally, the frequency shift Cf∆ is 
associated with the viscosity if the liquid 
remains the same.
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Discussion

The sound velocity and the specific acoustic 
impedance seem to have the best correlation to 
single selected signal parameters. This is why 
we started with simplified models for these two 
quantities and measured the temperature 
separately, knowing about its influence on the 
Lamb wave velocities:

Fig. 8. First realization of the LiquidSens sensors –
The liquid’s temperature is measured separately.

As a result in special velocity-density-tempe-
rature combinations significant deviations of the
sound velocity from the expected values could 
be observed. A complex calibration procedure 
can resolve this problem but with equation (2) 
and (3) we know about the interrelation 
between density, sound velocity and tem-
perature via dispersion. Moreover, with the 
knowledge of Lamb wave attenuation there is 
additional influence of the liquid’s viscosity. This 

is why the liquid’s state should be described 
with the already mentioned state variables Fc , 

Fρ , Fη and it’s temperature Fϑ - similar to the 
thermodynamic state variables. If the entire set 
of variables is determined, the dataset is con-
sistent and the models can be used to calculate 
e.g. concentrations with much better accuracy.
Fig. 9 visualizes the complete relationship 
between the state variables as well as the most 
affine signal parameters for each variable.

Fig. 9. Intercorrelation of the liquid’s state parame-
ters and signal parameters that have main influence 
in the models.

As a consequence of this new understanding 
the new generation of LiquidSens sensors 
makes use of every actual state variable in 
every calculation step. That means for instance, 
if the sound velocity has to be determined, the 
measured times of flight 0t and nt∆ are used, 

Fc Fρ

Fϑ

1 0
ˆ ˆu u

nt∆

0t

Fc Fρ

Fϑ Fη
cf∆

1 0
ˆ ˆu u

cf∆

1 0
ˆ ˆu u

nt∆

0t

Sϑ

0t

a) b)

c) d)

Fig. 7. Correlation of signal parameters with liquid properties: a) 0t with temperature, b) nt∆ with sound 
velocity, c) 1 0ˆ ˆu u with acoustic impedance and d) cf∆ with the viscosity of the liquid.
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but the predetermined values for F F, ϑ ρ and Fη
are considered as well. Actually, this is imple-
mented and tested for the determination of 
sound velocities and densities (Fig. 10).

Fig. 10. Actual realization in the LiquidSens platform
– The liquid’s temperature as well as it’s viscosity are 
not determined acoustically.

Example: Uncertainty of Liquid’s Sound 
Velocity

Taking the new idea of cyclic parameter pro-
cessing into account, it is a new challenge to 
make an estimate about uncertainty of 
measurement. On the one hand the inputs are 
intercorrelated. On the other hand there is 
no straight forward formula to be analyzed in 
the classical sense. The GUM, Supplement 1,
suggests Monte Carlo simulations for such
problems [9]. Therefore, each input variable 
must be considered uncertain with a charac-
teristic probability density function (PDF). For 
simplicity all input values are considered to be 
Gaussian with a certain standard deviation. For 
the liquid’s sound velocity the inputs are 

• measured times of flight: 125 psts = ±
• measured temperature: 0.1 Ksϑ = ±
• viscosity: unknown, i.e. fix

• calculated density: 25 g/lsρ = ±

Therewith two cases, following Fig. 8 and 
following Fig. 10, were simulated for 3 different 
frequencies. In the first case only the times of 
flight were taken into account (Fig. 11) and the 
phase velocity is only adjusted by knowledge of 

phc in the mid frequency. The mid frequency c2f
shows the smallest systematic deviation 
whereas other frequencies may lead to 
deviations up to 3 %. Apart from that the 
uncertainty increases with the sound velocity of 
the liquid in general.

In the second case group and phase velocity 
were calculated with the parameterized model.
The calculation of the fluid velocity was 
repeated several times for each simulated 
measurement until no significant change of the 
determined velocity could be noticed anymore. 
Fig. 12 shows the resulting uncertainties.

Fig. 11. Systematic (top) and nonsystematic (bot-
tom) deviations between determined (index ‘mess’) 
and preset values (index ‘soll’) for three frequencies 
with c1 c2 c3f f f< < - 1st approach

Fig. 12. Systematic (top) and nonsystematic (bot-
tom) deviations between determined (index ‘mess’) 
and preset values (index ‘soll’) for three frequencies 
with c1 c2 c3f f f< < - cyclic determination

There is no systematic deviation and, although 
the uncertainty of the density was assumed to 
be very high, the change of other state 
variables does not cause high deviations in the 
sound velocity determination anymore. In 

Fc Fρ

Fϑ Fη

1 0
ˆ ˆu u

nt∆

0t
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comparison to the other method the uncertainty 
can be decreased by 1 order of magnitude, but 
the correlation between uncertainty and sound 
velocity magnitude seems to be characteristic 
for the measurement system. 

Conclusion

The presented studies on an acoustic wave-
guide have experimentally shown the complex 
correlations between signal parameters (acous-
tic fingerprint) and the liquid’s state variables 

Fc , Fρ , Fη and Fϑ . It has further been demon-
strated that there is an influence of all these 
state variables on the dispersion relations of the 
waveguide which again are essential for the 
calculation of all the liquid’s state variables.

To overcome the dilemma of these cyclic 
dependencies, the dispersion relations were 
parameterized and included into a cyclic 
parameter processing. Based on a model of 
sound propagation as well as on this new 
scheme of parameter estimation Monte Carlo 
Simulations have shown that the new method 
will produce unbiased and to one magnitude 
order less uncertain results than another 
method without considering state dependent 
dispersion.

If the cyclic parameter estimation is fully imple-
mented in the LiquidSens sensors, there is a 
good chance to improve the remaining uncer-
tainties in both sound velocity and density 
measurement without time-consuming and 
expensive calibration procedures.
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