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Abstract: 
For the characterization, simulation and diagnosis of batteries, different methods can be used. One 
approach is the separation of static and dynamic behavior, to analyze it separately and to combine 
them into one model. The dynamic behavior is often characterized by pulse tests and spectroscopic 
methods. The static behavior is determined by measuring the open circuit potential at different state of 
charge and temperature. To be useful in an application the measured behavior must be converted into 
suitable models. The models should be valid over a wide operating range and applicable with only 
minimal loss of generality. These requirements can be met by nonparametric models. In this work 
nonparametric modeling of the open circuit potential as well as of the dynamic behavior is presented. 
Simulations were done and compared to measured results. 
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Introduction 
In applications electric vehicles, hybrids or 
stationary energy storage batteries as complex 
electrochemical systems require a powerful 
battery management system for diagnosis and 
control. These battery management systems 
usually contain algorithms for safety, behavior 
prediction and diagnosis as well as others. 
These algorithms rely on models of the battery 
behavior, thus the demand for accurate 
modeling. The modeling is done by either 
modeling the open circuit voltage and the 
dynamic behavior together: the most known are 
the Shepherd model and others semi empirical, 
[1][2], or models based on basic 
electrochemical equations [3]. A second 
approach would be to split the behavior into a 
dynamic and a static part. Here the open circuit 
potential is described using a look-up table [4], 
imposing strong memory usage, basic relations 
like the Shepherd, Unnewehr or Nernst model, 
and a dynamic part usually modeled by a 
limited number RC-elements [5]. Some of these 
models link single relaxations to 
electrochemical processes inside the cell but do 
not allow deeper insight. 

The paper organizes as follows: in the next 
section it is shown how to calculate parameters 
for a non-parametric model from lab-measured 
impedance data, in section three a simplified 
way to describe the open circuit voltage and in 

section 4 the combination of both methods to 
simulate the dynamic behavior. The simulation 
is then compared with measured data and the 
differences are discussed. 

Impedance Spectroscopy 
Impedance spectroscopy is able to measure the 
linear dynamic behavior of a battery by 
excitation of single frequency components of 
the battery current and measurement of the 
battery voltage. The impedance is then defined 
as 
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The resulting impedance spectra contain 
information on internal electrochemical 
processes as these processes are sensitive in 
different frequency ranges, thus allowing 
investigating different mechanisms with one 
measurement. For the evaluation of impedance 
spectra different strategies exist. The first would 
be direct modeling by complex impedance 
models including diffusion effects [6][7], 
modeling of electrode/electrolyte reactions [8] 
and modeling of porous electrode effects [9][10] 
beside parasitic effects like inductivities of the 
measurement setup. Finding a suitable model 
requires prior knowledge on the investigated 
system and sometimes overlapping effects 
make model selection hard. The evaluation 
using the chosen complex models is an ill-
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posed inverse problem which requires the use 
of advanced fitting algorithms to determine the 
model parameters [11][12][13] and even then it 
is not guaranteed that the model will sufficiently 
describe the measured spectra. If the model is 
sufficient the determined parameters can be 
used to track several effects and use them for 
diagnostics. However, using these models for 
simulation can be cumbersome as they often 
include fractional behavior in the frequency 
domain (sα -terms) leading to non-integer 
derivatives in the time domain [14]. 

Another evaluation strategy for impedance 
spectra is to find another representation of the 
data in way that it can be used for evaluation of 
chemical processes as well as for time domain 
simulations of the battery behavior. One such 
representation is the distribution of relaxation 
times [8]. 

Distribution of Relaxation Times 

The distribution of relaxation times (DRT) 
assumes a density function, γ(τ), over the 
domain of relaxation times τ. This can be 
understood as using a measurement model 
with an infinite number of RC elements each 
with a fixed τi as depicted in fig. 1.  

 

Fig. 1: measurement model used for the DRT 
aproach 

Each RC-element is then weighted by γ(τi). The 
shape and position of components of this 
density describe different electrochemical 
processes. Thus it is still possible to identify 
different electrochemical processes. 

DRT Calculation 

The reconstruction of the DRT from impedance 
data is again an ill-posed inverse problem 
which includes solving a Fredholm integral 
equation of the first kind: 

���
��

��� d)(
)(1

)("
0

2�
�

�
� polRZ  (2) 

Different solution strategies for the 
determination of γ(τ) exist: direct fitting of 
elements of the density function [15], 
deconvolution approaches [16][17] and 
regularization techniques [18]. A more general 
overview is given in [19]. 

In the paper we will use the regularization 
approach as it is easily implemented and is 
handy for the solution of other linear problems. 

After discretization eq. 2 becomes a system of 
linear equations with a coefficient matrix A with 
a high condition number and )()(~ ���� polR� : 
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thus calculation of the naive solution 
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will lead to a strong amplification of 
measurement noise. �A  is the pseudo inverse 
of A as this matrix is not always square. 

To stabilize the solution regularization can be 
used leading to a modified solution: 
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enforcing flatness of the solution depending on 
the regularization parameter 
  which is related 
to the noise in the measurement. This equation 
can be written in stacked matrix form and 
solved with standard tools, e.g. MATLAB ®. 

The solution now suppresses the amplification 
of noise but is not necessarily positive as preset 
by the measurement model which forms the 
basis of this method. Usually additional non-
negativity constraints are employed in eq. 5 
leading to sequential algorithms for the solution. 

Simulation using the DRT 

From fig. 1 the way of simulating the dynamic 
behavior the linear dynamic response of a 
battery can be understood as a superposition of 
the dynamic responses of the single RC-
elements. This can be implemented in a 
numerical efficient way as digital filter. The 
coefficients can be derived from the DRT: the 
time constants are given by the support of the 
DRT in the τ domain and the resistance value is 
given by the density value γ(τi). 

Description of the Open Circuit Voltage 
Modeling the open circuit voltage (ocv) serves 
two purposes. First is the simulation of the 
battery behavior and second it aids in the 
determination of the state of charge via tracking 
of the ocv. For the modeling of the ocv of a 
battery different approaches exist. The simplest 
way is to store the relation between state of 
charge, temperature and ocv in a look-up table 
and use interpolation methods to determine the 
ocv at different operation points. Another 
approach would be to use well known models 
like the Shepherd model [1], or other models 
that use the diffusion processes inside the bulk 
material of the electrodes as described in [3]. 
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Another possible way to describe the ocv is to 
use kernel regression. 

Kernel Regression 

Kernel regression expands standard linear 
regression to the nonlinear case by using an 
implicit mapping of the input data. A linear 
equation can be rewritten in terms of inner 
products on the data used for the regression 
(the training data): 

� ����
l

ii bxxwbmxy ',  (7) 

Here Xx �'  describes the data used for 
regression, and w  is the weight associated to 
each input data. By using a nonlinear 
map FX 
:� , mapping the input data in 
some high dimensional feature space, one can 
expand this method to the nonlinear case: 
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It can be shown, that the inner product of the 
input data in F corresponds to calculating 
some kernel on the input data, [20]: 
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Thus it is possible to calculate the inner product 
in F without explicit calculation of the mapping 

)(��  as calculation of this mapping can be hard 
and sometimes impossible. We now have a 
nonlinear regression that can be easily 
calculated: 
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Depending on the kernel used, this allows 
different nonlinear functions to be regressed 
without having an explicit model. This can be 
useful if only the behavior should be 
approximated and no underlying fundamental 
laws have to be investigated. 

The kernel regression can be expanded to 
select only necessary training data if a small 
error in the regression is allowed. This 
expansion leads to the support vector 
regression. With this method only a small 
subset of the training data is selected during an 
optimization process resulting in special support 
vectors. The determination of the support 
vectors requires the calculation of a sparse 
solution; powerful algorithms exist for this 
problem [20][21]. 

Experimental 
For testing the proposed method a commercial 
5 Ah Lithium Polymer cell was used. The cell 
has an ocv range from 3.3 to 4.2 V. It was 
modeled with kernel regression as described 
above using a multi quadric kernel: 

 
Fig. 2: ocv modeled using kernel regression with 
multi quadric kernel 

Fig. 2 shows the ocv, the training data used for 
regression and the resulting nonlinear 
regression with overall only 20 support points 
used for regression. The second graph shows 
the relative error which never exceeds 0.2%. 

The linear dynamic behavior of the battery was 
characterized by impedance measurements as 
shown in fig. 3. From these measurements the 
DRT, fig. 4, was calculated using regularization 
method as described above. 

 
Fig. 3: measured IS spectra 

 
Fig. 4: calculated DRT spectra 
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The data above was used for the simulation of 
the battery response to random test sequence 
with an average discharge current of 1 A. 
Simulation time was 30 min with an overall 
removed charge of 1.04 Ah starting at 100 % 
SoC. The simulation was done neglecting 
temperature and intercalation capacity effects 
and assuming 98 % discharge and 96 % charge 
efficiency. The result is shown in fig. 5.  

The simulated battery voltage is in good 
agreement with the measured response. The 
error is mainly due to inaccuracies in the ocv 
regression. Fig 6 shows the histogram of the 
residuals. The resulting overall error has a 
mean of 0.44 mV and a standard deviation of 
5.2 mV which is comparable to the overall error 
of the ocv regression (µ = 1.1mV, σ = 2.8 mV). 

 
Fig. 6: distribution of the simulation error 

Conclusion 
A method was shown for the simulation of the 
dynamic behavior of batteries that uses non-
parametric modeling approaches. The 
description of the dynamic behavior of a battery 

using the DRT approach serves two purposes: 
the identification of electrochemical processes 
and the parameterization of a digital filter for 
simulation. In combination with the kernel 
regression a straight forward simulation 
procedure can be realized. As a benefit the 
kernel regression needs less memory for the 
storage of the SoC-ocv relationship (20 
coefficients and 20 support points).  

The DRT as well as the kernel regression are 
useful tools for the characterization of batteries 
and their efficient modeling in various 
applications. 

Further work will focus on the expansion of the 
DRT method for the use in the nonlinear battery 
behavior identification. The kernel regression 
method can aid in the efficient storage of look-
up tables or for the development of SoC 
determination algorithms. 
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