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Abstract: 
A new piezoresistive high-g accelerometer is presented that was developed on the basis of an 
unconventional, displacement focused design approach. The approach analyses the “geometrical 
constant”, which describes the relation between the square of the resonant frequency and the 
displacement under static load of a spring-mass system. The value is maximized in order to achieve a 
high sensitivity, high bandwidth accelerometer. It has a figure of merit (sensitivity times resonant 
frequency squared) of about 5·106/m, which is higher than any other accelerometer in the literature or 
on the market. The design has been implemented as a MEMS device and has been characterized for 
shock loads up to 60,000 g. The concept of the geometrical constant may be applicable to other 
sensor types. 
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1. Introduction 
High-g accelerometers are designed to work in 
harsh environments, withstanding and 
measuring extreme mechanical loading. The 
measurement range addressed by the 
presented sensor is up to 100,000 g, which 
forms the high end of useful and technically 
feasible MEMS accelerometry. Applications are, 
for example, the study of penetration processes 
[1], shock testing of electronics [2] and dynamic 
material characterization [3].  

The acceleration pulses that occur in these 
environments usually are of high amplitude and 
short duration (micro- to milliseconds) and carry 
high frequency content. Therefore, the utilized 
accelerometers need to have very high 
bandwidth. Additionally, the sensors are also 
supposed to have good sensitivity, to increase 
the resolution of the measurement signal.   

Concerning bandwidth, accelerometers are 
limited by the fact that they employ a 
mechanical spring-mass system to convert 
acceleration into a measureable displacement. 
The useful bandwidth then is a fraction of the 
mechanical resonant frequency of the spring-
mass system. It is well known, that a demand 
for high sensitivity is opposing that for high 
bandwidth, which is due to the fact that the two 
are interrelated, as will be explained in more 
detail in section 3. Mathematically, this can be 
expressed by the following equation [4] [5]:  

 2
designS� ��  (1) 

Here, � is the first resonant frequency of the 
device and S its sensitivity. The product �design 
is a design specific constant of the sensor, 
illustrating the impossibility of optimizing 
sensitivity and bandwidth independently. The 
maximum of the product is limited by the value 
of this constant, making it a figure of merit. It 
allows the comparison of accelerometer 
designs from different sensitivity and bandwidth 
ranges.  

The new accelerometer is, as most high-g 
MEMS accelerometers are, a piezoresistive 
inertial device. First experimental results have 
been published [6] together with a description of 
the design and design process. Besides 
showing new experimental results, this paper 
will focus on discussing the so called 
“geometrical constant”, which is a fundamental 
property of any spring-mass system. It forms 
the basis of the design strategy used for 
accelerometer geometry development and may 
be generalized to cover other sensor principles.  

2. Motivation of New Design Strategy 
The design of accelerometers is usually 
discussed on two levels. On the higher one, i.e. 
the macro level, general features like the 
sensor type, the general shape of the spring-
mass system or the readout type are 
qualitatively defined, often depending on 
previous knowledge. On the lower level, i.e. 
micro level, a detailed, quantitative optimization 
of a specific initial geometry is conducted with 

DOI 10.5162/sensor2013/A5.1

AMA Conferences 2013 - SENSOR 2013, OPTO 2013, IRS  2013 1052



the help of analytical expressions and numeri-
cal simulations, arriving at an improved design.  

It is the authors’ impression that the initial 
designs, especially their geometrical shape, are 
either based on previous concepts or justified 
by their final performance. Both approaches are 
perfectly sound, but are missing the additional 
insight a strategy on an intermediate level may 
provide and seldom discuss how the 
fundamental geometry was found in the first 
place. Some research has been conducted in 
the area of generic topology optimization (see 
for example [7]). However, no experimental 
data has been presented.  

The new accelerometer design strategy 
includes an intermediate level, where semi-
quantitative arguments are established. This 
meso level is displacement focused and gives 
the designer a general guideline, helping to 
quickly identify promising initial geometries. 
Figure 1 gives a simplified view of the design 
steps taken on the different working levels. The 
discussion in this paper will focus on the 
“geometrical constant”. It is a general property 
of continuous spring-mass systems and 
therefore is applicable to other sensor types, as 
well (see section 8).  

 

 
Fig. 1: Working steps at different accelerometer 
design levels. Manufacturing limitations always have 
to be kept in mind.  

3. Geometrical Constant 
As mentioned in the introduction, the spring-
mass system is the limiting factor for the 
bandwidth of an accelerometer. Also, it greatly 
influences its final sensitivity S, since S is 
proportional (or at least monotonically related) 
to the amount of displacement �x of the mass 
for a given acceleration a. It is well known, that 
the spring-mass system is also responsible for 
the relationship between sensitivity and 
bandwidth shown in eq. (1). For a single degree 
of freedom system it holds true that:  

 2 1x
a

��
�  (2) 

This formula is quoted when the general 
sensitivity-bandwidth limitation of accele-
rometers is discussed (see for example [5] or 
[8]). However, this formula is inaccurate, if not 
to say wrong, if applied in general. It is only true 
for single degree of freedom systems. In a real, 
continuous system the correct relation is:  

 2maxx
a

C��
�  (3) 

Here, �xmax is the maximum value of the 
system’s deflection curve �x, � the 
eigenfrequency of the corresponding oscillation 
mode (usually lowest) and C is a dimensionless 
quantity, i.e. the aforementioned geometrical 
constant. C depends solely on the relative 
geometry of the spring-mass system and 
typically has a value of ‘1’ to ‘3’.  

Eq. (3) itself is in principle known [9] [10] [11], 
however, to the authors’ knowledge, has never 
been applied to sensor design. Considering the 
regular quotation of eq. (2), the geometrical 
constant almost seems like a forgotten 
parameter. Yet, its value determines the 
maximum sensitivity-bandwidth product a 
certain spring-mass system has and is well 
worth to be analyzed.  

Sundararajan [10] gives an integral to 
approximate C for a general load. It can be 
simplified for the case of inertial forces acting 
on the system:  
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With:  

 1norm
max

xx
x
�

�
�

� 	  (5) 

Here, � is the density of the spring-mass 
systems material and �xnorm is the normalized 
deflection curve of the system. Both quantities 
can be spatially dependent and are integrated 
over the physical domain V of the system (in 
real systems a volume).  

The result of the integral is close to ‘1’, if most 
of the mass of the spring-mass system is close 
to its point of maximum deflection. If the mass 
is distributed in regions of small displacement, 
the value of C becomes larger. This general 
behavior is a good guideline for the designer to 
find starting geometries for subsequent detailed 
treatment. Figure 2 shows several 2D 
examples, visualizing the concept. Note that the 
“classic” geometry with a large mass at the end 
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of a bending element has the smallest value for 
C.  

In practice, the integral is not useful to calculate 
specific values of the geometrical constant, 
since the deflection curves for anything but 
simple systems are not readily available. It is 
more feasible to calculate C with numerical 
methods, e.g. FEM simulations, as has been 
done for the examples in figure 2. Numerous 
further examples can be found in [11].  

 

 
Fig. 2: Geometrical constant of different cantilever 
configurations. The material density is homogenous 
in all examples. (Image: [6])  

The fact that C is dimensionless is helpful for 
designing optimized geometries, since it means 
a spring-mass system can be scaled in size 
without changing the geometrical constant. The 
designer can therefore choose an optimized 
spring-mass system and then scale it in size to 
have the desired sensitivity-bandwidth tradeoff 
(within the limitations of the manufacturing 

process, of course). The mechanical resonant 
frequency of a spring-mass system is simply 
anti-proportional to the spatial scaling factor.  

The concept of the geometrical constant forms 
the basis of the new displacement focused 
design approach. C is to be maximized to 
obtain maximum deflection per acceleration of 
the mass for a given resonant frequency. The 
next step is to efficiently detect this 
displacement.  

4. Choice of Spring-Mass System 
As mentioned in the previous section, the 
geometry of the spring-mass system has to be 
compliant with the limitations of available 
MEMS processes. For the high-g accele-
rometer, a plate with constant thickness was 
chosen, resulting in a geometrical constant of 
about ‘2’ (see figure 3).  

 

 
Fig. 3: Spring-mass system of the new 
accelerometer. It is a flexural plate with three fixed 
edges. The coloring indicates the displacement curve 
under load (red: maximum, displacement not drawn 
to scale). 

5. Further Design Choices 
A piezoresistive readout mechanism is chosen 
to detect the deflection of the flexural plate. It is 
simple to manufacture and can be easily 
connected in a Wheatstone bridge. Single-
crystal silicon is selected as the main material 
of the sensor. It can be machined with standard 
processes and allows the creation of 
piezoresistive elements with very high gauge 
factors.  

Figure 4 shows a schematic of the design with 
the flexural plate being defined by two trenches 
that are etched into bulk silicon. The 
piezoresistive elements, i.e. strain gauges, are 
free-standing bridges that span these trenches 
and are connected to the plate and the frame. 
They are attached close to the center of the 
plate, in order to maximize the sensitivity of the 
device. More details about the device design, 
including a finite element simulation, can be 
found in [6].  
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Fig. 4: Schematic of the new design. Free standing 
piezoresistive bridges span the trenches that define 
the flexural plate to be the spring-mass element. 
(Image: [6]) 

6. Manufactured Device 
An image of the bare silicon die of the new 
MEMS accelerometer is shown in figure 5 (top). 
The silicon processing was conducted together 
with the Fraunhofer EMFT. A multi-layer LTCC 
package has been designed together with the 
Fraunhofer IKTS. Figure 5 (bottom) shows the 
package, which is SMD mountable.  

 

 

 
Fig. 5: Above: Image of the bare silicon die of the 
new design. Below: The packaged sensor with SMD 
capable metallization.  

 

Note that the new geometry has its sensitive 
axis in the wafer plane, which is unusual for 
high-g accelerometers. In [12] it is discussed 
how this influences the package design, since 
the requirements of good mechanical coupling 
and easy electrical contacting both have to be 
taken into account.  

7. Experimental Results 
The new devices are characterized on a so 
called Hopkinson bar. This apparatus is 
capable of reproducibly generating short 
acceleration shocks with amplitudes of several 
ten thousand g’s. Details on the device and its 
working principle can for example be found in 
[13]. Figure 6 (top) shows a sample 
measurement with a 60,000 g pulse that is well 
reproduced by the sensor. It shows the typical 
half-sine shaped acceleration pulse of the bar 
together with inevitable residual oscillations of 
the experimental sensor carrier, which are also 
measured by the sensor. Figure 6 (bottom) 
shows a series of three Hopkinson bar tests, 
which demonstrates the good reproducibility of 
the loading conditions and the measurement 
quality of the sensor.  

 

 
Fig. 6: Above: Sample experiment with a 60,000 g 
pulse generated on a Hopkinson bar. Below: Three 
consecutive measurements with medium amplitude, 
demonstrating good reproducibility.  
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The performance of the new accelerometer was 
compared to two commercially available 
reference sensors. Table 1 summarizes the 
results with respect to the main design goals 
sensitivity and resonant frequency, the latter 
being proportional to bandwidth. The new 
design exhibits an increased sensitivity, while 
maintaining a very high resonant frequency, 
overcoming the traditional trade-off. Its figure of 
merit �design is almost one order of magnitude 
larger than for the reference designs. The high 
performance is due to the new displacement 
focused design approach, for which the 
geometrical constant forms the basis. Of 
course, C only accounts for a part of the 
increase in the figure of merit. More details on 
this can be found in [6].  
Tab. 1: Comparison of the new design and 
commercially available reference accelerometers.  

 Sensitivity 
in µV/V/g 

Resonant 
frequency 

�design 
(eq. (1)) 
in 103/m 

Ref. A 0.21 164 kHz 23 

Ref. B 0.09 1.34 MHz 650 

EMI  0.50 1.5 MHz 4500 

 

8. Generalization of Geometrical Constant 
The usefulness of a displacement focused 
design approach is clearly demonstrated by the 
high performance the new device exhibits. It is 
noteworthy that the geometrical constant, which 
forms the basis of the design strategy, has 
been known for decades but to the authors’ 
knowledge never was applied in a sensor 
design. Since the geometrical constant is an 
inherent feature of every continuous spring-
mass system, any sensor that uses mechanical 
oscillatory components can in principle benefit 
from it – so long as sensitivity and (mechanical) 
bandwidth play a role for its performance.  

For all inertial sensors, like accelerometers or 
gyroscopes, no generalization needs to be 
done – the concept of the geometrical constant 
can simply be applied. However, for low 
bandwidth, high sensitivity sensors, it may not 
be possible to design systems that have an 
increased value of C. High sensitivity 
geometries usually demand a large mass on 
rather fragile bending elements, which always 
results in a constant close to ‘1’. The strategy of 
generating a high-C geometry and then scaling 
it, will likely run into dimension limitations, due 
to it becoming too large to be within the 
manufacturing limitations. For medium and high 
bandwidth sensors however, the concept 

should at least be considered. Not that the 
geometrical constant can also be determined 
for axial vibrations [11]. Regarding pressure 
sensors that usually feature flat, membrane like 
structures, high bandwidth and sensitivity are 
also desired [14]. An optimization with respect 
to C can be carried out in much the same way 
as has been discussed here, since pressure 
acts uniformly on the system.  

Resonant sensors, which need a driving force 
to work, might also benefit from a high 
geometrical constant. Unfortunately, underlying 
working principles are more complicated and 
eq. (4) cannot be applied any more. However, 
Sundararajan original formula accounts for 
general loading, not just inertial forces:  
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Here, q is the generalized static loading per unit 
domain V acting on the system and q0 a 
constant to normalize the loading. Note that the 
formula can be applied, only if the static 
deflection curve is similar to the first vibration 
mode [10]. For inertial loading, this is 
automatically the case.  

AFM probes are also subject to external forces 
and need to have good sensitivity and 
bandwidth [15] [16]. In this case, a point load is 
acting on the system.  

9. Conclusion and Summary  
The high performance of the new accele-
rometer demonstrates that the displacement 
focused design approach was successful. The 
basis of this strategy, the geometrical constant, 
allowed finding the new, promising spring-mass 
system geometry.  

The geometrical constant seems almost like a 
forgotten parameter. Especially against the 
background that geometry optimization is 
almost exclusively conducted with numerical 
methods. Still, it provides insight for the design 
process on a medium abstraction level and 
allows the designer to quickly assess general 
spring-mass geometries.  

The generality of this constant indicates that it 
may be successfully applied to other sensor 
types that have mechanical oscillatory parts. 
However, high-g accelerometers are probably 
the most important examples, since these have 
a specifically high requirement for combining 
high bandwidth and high sensitivity.  
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