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Abstract 

This work presents a method to simulate the heat exchange characteristics of a MEMS Pirani vacuum 
sensor. The simulation couples the electro-thermal sensor system with the surrounding rarefied gas 
atmosphere. The heat exchange between the sensor and the surrounding gas is modelled by the ex-
change of boundary conditions between the solid and the gas (fluid) region. The dilution effects which 
occur under rarefied gas atmosphere are taken into account by an adapted slip boundary condition. 
The simulation has been carried out using a specially adapted solver which is implemented in Open-
FOAM. The simulated results are in excellent agreement with the measured data of a MEMS Pirani 
vacuum sensor. 

Introduction 
Pirani vacuum sensors are widely used for vac-
uum pressure measurements ranging from 
10-3 mbar to 103 mbar [1]. Classical Pirani vac-
uum sensors usually consist of an electrically 
heated wire and a heat sink (see Fig. 1). The 
working principle of Pirani vacuum sensors is 
based on the pressure dependent heat loss of 
the wire. 

Fig. 1: Schematic view of a classical Pirani vacuum 
sensor. The wire is electrically heated and the pres-
sure dependent heat loss is measured. The heat 
dissipates from the wire with three different thermal 
flows ������, ��	� and �
	�.
The electrically generated heat ��� 
 � � �� dis-
sipates from the wire by three different mecha-
nisms (see Fig. 1): 

1. ������: Heat diffusion through the solid 
suspension of the heated wire 

2. ��	�: Heat radiation of the hot wire  

3. �
	�: Heat diffusion through the gas 
Only heat transport through the gas �
	� is 
pressure dependent. At lower pressures, fewer 
gas molecules collide with the heated wire. 
Therefore, at low pressures the heat dissipation 
from the wire is lower than at higher pressures. 
This results in a higher temperature of the 
heated wire to be be detected by the measure-
ment of the wire’s resistance. 

Analytical modeling of Pirani vacuum sen-
sors 
The heat loss through the gas Qgas is propor-
tional to the thermal conductivity �(p) of the 
surrounding gas and it is proportional to the 
temperature difference between the hot wire 
and the heat sink:

���� � ���� � ������ � ���	
� (1)

Due to gas dilution, the thermal conductivity �(p)
becomes pressure dependent and can be mod-
eled by eq. (2) [2]

���� 
 � ��
� � ����

�� !
� � "#"# $ (2)

where p is the pressure, "# is the thermal ac-
commodation coefficient, �0 is the reference 
thermal conductivity, p0 is the reference pres-
sure and �� is the mean free path at reference 
pressure. 

In addition to pressure dependence the thermal 
conductivity depends on the gap distance d. 
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Fig. 2 depicts the normalized thermal conductiv-
ity for three different gap distances d (eq. (2)). 
The operating range of the sensor is surround-
ed by two saturated regions. At very low pres-
sure, the thermal conductivity of the gas is near 
zero. When the pressure exceeds the operating 
range, the thermal conductivity becomes pres-
sure independent and reaches its reference 
value��. Between those pressure independent 
regions the Pirani vacuum sensor can be oper-
ated, excelled by the high slope in the center of 
the graph. 

Fig. 2: Calculated thermal conductivity as a function 
of the pressure (lower abscissa) or mean free path 
(upper abscissa) for three different gap distances d.  

In Fig. 2 the vertical lines mark the points where 
the mean free path equals the gap distance d. 
The operating range is always located within 
two decades surrounding this characteristic 
point. 

This simple concept of pressure dependent 
thermal conductivity has two main disad-
vantages: For calculating the thermal conductiv-
ity the gap distance has to be known, so only 
simple geometries with constant gap distance 
can be calculated by eq. (2). The other disad-
vantage is that the real heat distribution in the 
system cannot be calculated. To overcome 
these disadvantages the following paragraph 
presents a method to numerically simulate an 
arbitrarily shaped Pirani vacuum sensor. More-
over the application of numerical methods al-
lows the treatment of systems with convection. 

To model the sensor characteristics, all mecha-
nisms of heat transport have to be taken into 
account, since they all affect the characteristics 
and the sensitivity of the sensor. 

MEMS Pirani sensors 
MEMS technologies are advantageous for the 
fabrication of Pirani vacuum sensors. Due to 
the high accuracy very small gap distances are 
possible which allow the operation of the sensor 
at higher pressure levels. The small volume 

reduces the response time of the sensor. Both 
effects increase the performance and the sensi-
tivity of the sensor. 

MEMS Pirani sensors, fabricated with bulk mi-
cromachining, usually consist of an anisotropi-
cally etched silicon chip with a thin silicon ni-
tride or oxide membrane [3], [4]. The heater is 
structured onto the membrane since the mem-
brane provides small heat dissipation through 
its suspension. The heat sink is formed by the 
chip carrier or an optional silicon cover. Fig. 3 
shows the general configuration of a bulk-
micro-machined Pirani vacuum sensor.

Fig. 3: MEMS Pirani sensor. A thin film heater is 
located on a thin membrane. The distance to the 
carrier forms the gab distance d. To operate the 
sensor at higher pressure, a silicon cover can op-
tionally be mounted on top of the sensor to form a 
smaller gap. 

Numerical model of a MEMS Pirani vacuum 
sensor 
The numerical model of a Pirani vacuum sensor 
consists of two regions: the solid region, which 
represents the silicon chip and the membrane 
with heater, and the fluid region which repre-
sents the gas atmosphere around the sensor. 
On the interface between the solid and the fluid 
region (fluid-solid-interface), the boundary con-
ditions for the temperature are exchanged to 
couple both regions. The dilution effects, which 
occur under low pressure atmosphere, are 
modeled by slip boundary conditions. Instead of 
calculating a pressure depending overall ther-
mal conductivity �(p) of the gas (eq. (2)), the 
thermal conductivity is kept constant during the 
simulation process. 

Slip boundary conditions 
Full temperature accommodation of the gas at a 
fluid-solid interface requires an infinitely high 
frequency of collisions between the gas mole-
cules and the boundary. This happens, when 
the mean free path of the gas molecules is 
larger than the decisive geometric dimension, 
e.g. the gap distance d. Under working condi-
tions of a Pirani sensor, the mean free path 
usually does not meet this assumption. To ap-
ply the continuum model anyway, one has to 
introduce the von Smoluchowski boundary con-
dition (see Fig. 4 ) [5]. Due to fewer collisions 
between the gas molecules and the wall the 
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temperature accommodation between fluid and 
solid is no longer continious and a difference 
between the solid temperature and a fluid tem-
perature at the interface appears. 

Fig. 4: Temperature slip boundary condition at the 
solid-fluid interface. Between the solid and the fluid 
region a temperature difference occurs at the bound-
ary. 

For an ideal gas the complete first order slip 
boundary condition for the temperature (v. 
Smoluchowski slip) reads as [6], [7]: 

�%�&�� � ������ 
 '�( 
 � � )#
)#

�*
* � �

�
�+ ,

-�
-./(

(3)

where k is the heat capacity ratio, Pr is the 
Prandtl Number and � is the mean free path at 
the actual pressure. !0#01$( is the gradient in the 
temperature field normal to the fluid-solid-
interface. 

The mean free path � can be estimated as fol-
lows [8] : 

��2 
 � *3�
45� 6� �

7 8 � �9:;�<�=	
� (4) 

where kB is the Boltzmann constant and dm is 
the diameter of the gas molecules. Comparing 
eq. (2) and eq. (3) shows, that the global tem-
perature difference between the gap is trans-
formed into a local gradient computed on the 
fluid-solid-interface. This makes the model in-
dependent from any geometry assumptions, 
like a constant distance between heater and 
heat sink. 

All other boundary conditions of both regions 
are fixed values or zero gradient type. 

Heat radiation 
Under vacuum conditions the heat transport 
through radiation becomes more important, 
since the transport by heat conduction through 
the gas decreases. In a numerical simulation a 
radiation model can easily be implemented. The 
heat flux Q caused by radiation can be calcu-
lated by  

� 
 �>"������?@ (5)

where � is the emission coefficient, Tsolid is the 
temperature at the solid surface, A is the area 
of the emitting surface and " is the Stefan-
Boltzmann constant. In this work the P1-Model 
is applied to calculate the radiative heat fluxes 
[9]. 

Governing equations 
In both regions, the solid and fluid region, the 
heat diffusion equation has to be solved. Since 
we are not interested in the transient character-
istic of the sensor, the time derivative can be 
neglected. For the fluid region the heat diffusion 
equation reads 

A � ���%�&��A�%�&��� 
 9 (6)

where �%�&�� denotes the constant thermal con-
ductivity of the gas. For the solid region the 
equation is almost the same, except for a 
source term which represents the Joule heating 
in the heater.

A � ��������A������� 
 ��� (7)

In this equation ������ denotes the thermal con-
ductivity of the silicon chip and the nitride/oxide 
membrane. The source term ��� is the volumet-
ric power density caused by the electrical cur-
rent in the heater. 

Coupling of solid and fluid 
Direct matrix coupling of both regions is not 
feasible, since the temperature is not continu-
ous at the fluid-solid-interface (see Fig. 4 and 
eq. (3)) and a radiation model has to be solved 
in the fluid domain. Another advantage of a 
sequential coupling strategy is, that the mesh 
need not to be conformal at the fluid-solid-
boundary interface. The disadvantage is a 
slower convergence behavior of the solver. The 
used coupling strategy is known as Dirichlet-
Neumann-Coupling and works as follows [10]:

1. Calculation of the temperature field in 
the fluid region 

2. Calculation of the heat flow into the sol-
id region. The heat flow is used as a 
Neumann-boundary condition for the 
calculation of the temperature field in 
the solid domain 

3. Calculation of the temperature field in 
the solid region 

4. Use the calculated temperature on the 
solid-fluid-interface as Dirichlet-
boundary for the calculation of the tem-
perature field in the fluid domain. 
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This coupling strategy is expanded by the cal-
culation of the v. Smoluchowski temperature 
slip and the P1 radiation model. The sequence 
diagramm of the simulation is shown in Fig. 5. 

Fig. 5: Sequence diagram for the simulation proce-
dure.

At first all start and boundary conditions are 
initialized. This includes the temperature fields 
as well as all material properties. In the second 
program step the temperature field in the fluid 
region is solved. This step is repeated for a 
predefined number of sub cycles J. Subse-
quently the temperature field is used to calcu-
late the heat flux at the fluid-solid-interface. The 
heat flux is used as a boundary condition to 
calculate the temperature field in the solid re-
gion. The calculation in the solid region is re-
peated for a given number of sub iterations. 
The boundary temperature at the fluid-solid-
interface and the surface normal gradient of the 
temperature in fluid region is used to calculate a 
new boundary temperature in the fluid region 
(slip boundary). If the desired convergence is 
reached the solver stops. Otherwise the whole 
procedure is repeated. 

The electrical subsystem 
Usually the heater of a Pirani vacuum sensor is 
operated in a Wheatstone bridge (see Fig. 6). 

The Wheatstone bridge is powered by the con-
stant voltage U0. 

Fig. 6: Electrical configuration of a the simulated 
Pirani vacuum sensor. The heater is operated in a 
Wheatstone bridge, which is calibrated at high vacu-
um. 

In this configuration the heater is heated by the 
power ��� �
 BC�	D��E�C�	D��� . Since the tempera-
ture is varies, the resistance of the heater is not 
constant. So the electrically generated heat 
source needs to be updated in every iteration 
step. Since the heater is operated in a Wheat-
stone bridge the power density in the heater 
reads

��� 
 ����F 
 �C�	D��B��
��C�	D�� � �G��F (8)

The resistance is calculated by the following 
linear formula:

�C�	D�� 
 �C�	D��H��� � I�� � ���� (9)

where � denotes the thermal coefficient of the 
electrical resistance. These two equations are 
calculated after each solid region temperature 
calculation. To obtain the output voltage Uout of 
the Wheatstone bridge, the following equation 
needs to be computed: 

B�&D 
 , ��
�� � �C�	D�� �

�
�/B� (10)

Implementation in OpenFoam 
The described solving procedure has been 
implemented in OpenFOAM. OpenFOAM is a 
collection of C++ libraries to solve partial differ-
ential equations in arbitrary geometry [11]. 
OpenFOAM uses the finite volume method 
(FVM) to solve differential equations.  It con-
tains programs to generate computational grids, 
to solve the equations and some libraries for 
post processing. Since it is open source, the 
user can adapt the solvers according to the 
problems to be solved. 

Start Initialise start and 
boundary conditions

�����f luid � T fluid��0

radiation model Solve temperature and
radiation in fluid region

Repeat until given
number of subcycles J

j > J

QS��� f luid��� T S, fluid�	nS�
Qrad

Calculate and map 
heat flux as boundary
condition into solid region

�����solid � T solid��p Calculate temperature
in solid region

Repeat until given
number of subcycles K

k > K

Calculate temperature 
and map at boundary
condition into fluid region

T S�T S ,solid�
2��T

�T

2k
k
1

�
Pr �
T fluid


n �S

T rad�T S , solid

Repeat until reach
convergence criterion

i = i + 1

Stop
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Sensor test case 
The solver is validated with a MEMS Pirani 
sensor, with a similar configuration to Fig. 3, but 
without a silicon cover. Fig. 7 shows a 3D-CAD-
model of the simulated Pirani vacuum sensor. 
The silicon nitride membrane has an area of 
1080µm x 1080 µm and a thickness of 800 nm. 
The thickness of the silicon chip is 500 µm, 
which represents the gap distance (see section 
1).

Fig. 7: 3D-Cad model of the simulated Pirani vacuum 
sensor with membrane area of 1080 µm x 1080 µm 
and thickness of 800 nm. The thickness of the silicon 
chip is 500 µm. 

To apply the finite volume method to solve the 
differential equations the computational domain 
has to be discretized into small control volumes. 
Since the solver couples fluid and solid regions 
sequentially, both regions are meshed sepa-
rately. As mentioned before, there is no need to 
generate conformal meshes at the fluid-solid-
interface. The computational grid is depicted in 
Fig. 8.  

The solid region is meshed with a block struc-
tured hexagonal grid. This provides the possibil-
ity to mesh thin membranes with a low number 
of cells. The block structured mesh provides the 
lowest non orthogonality which guarantees 
numerical stability. The fluid domain is meshed 
with an automatic unstructured tetragonal grid. 

Fig. 8: Computational grid of the sensor arrange-
ment. Green marks the fluid region, red marks the 
solid region. The heater is neglected for the compu-
tations. It can be seen, that the mesh is highly non 
conformal at the solid-fluid-interface. 

Since the sensor has a quadratic footprint, 
symmetry planes can be used to save computa-
tional time. Two symmetry planes are intro-

duced, therefore only a quarter of the sensor 
has to be modeled. 

Simulation parameters 
To start the simulation process the solver needs 
all of the material specific constants required by 
eqns. (3),(5),(6) and (7). The ambient tempera-
ture is set to 300 K. 
Tab. 1: Material properties and dimensions apllied in 
the simulation 

Material constant value

Thermal conductivity of 
silicon �J� / K<�L

150

Thermal conductivity of 
silicon nitride �J�M / K<�L

2

Thermal conductivity of 
air at atmospheric pres-
sure �N�� / K<�L

0,026

Thermal accommodation 
coefficient "# 0.9

Heat capacity ratio k 1.4

Prandl Number Pr 0.7

Emissivity of the mem-
brane >O 0.3

Membrane area  / µm² 1080 x 1080

Membrane thickness / nm 800

Heated volume / µm³ 750 x 750 x 0,8

In order to calculate the power density accord-
ing to eq. (8),(9) and (10),  applied to the heat-
er, the properties of the electrical circuit are 
needed. The bridge is calibrated at high vacu-
um. 
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Tab. 2: Properties of the electrical subsystem 

Material constant value

Bridge resistance �G / � 1130

Resistance of the heater 
�C�	D��H9 at 300 K /� 1000

Bridge input 
voltage B� / V 1

Thermal resistance coeffi-
cient of the heater � / PL

QRS � �9:;

Simulation results 
The simulated values are compared with meas-
ured values of the same sensor setup. The 
output voltage characteristics are plotted in Fig. 
9.  

Fig. 9: Simulated and measured  bridge output volt-
age characteristic of the Pirani vacuum sensor 

It can be seen, that the simulated voltage fits 
well to the measured characteristic. The differ-
ences in the absolute values are due to uncer-
tainties in applied material properties and di-
mensions. 

To compare the pressure characteristic of the 
simulated and the real sensor, the normalized 
output characteristics are plotted in Fig. 10. It 
can be seen, that the normalized characteristics 
fit almost perfectly. This indicates that the mod-
el is suitable for the computation of heat trans-
fer in a vacuum system. 

Conclusion 
The finite volume method has been applied to 
calculate a MEMS Pirani sensor characteristic. 
It has been shown, that the developed simula-
tion algorithm can be applied to model the heat 

transfer in a diluted gas atmosphere. Since the 
simulation needs no assumption about the ge-
ometry it is not necessary to introduce a correc-
tion factor to fit the simulation results to the 
measured results.  

Fig. 10: Normalized pressure characteristic of the 
measured and the simulated values 

Outlook 
The developed algorithm can be applied to 
arbitrary geometries for the characterization of 
the heat transport behavior in diluted gas at-
mosphere. This is the case under vacuum con-
ditions, but the same effects occur under 
standard pressure in MEMS, in which the di-
mensions are in the scale of the mean free path 
of gas molecules. So the algorithm offers the 
possibility to model heat transfer problems in a 
huge number of MEMS devices. 
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