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Abstract:
This article deals with the identification of abnormal combustion phenomena in gasoline engines by 
reconstructing physical values, which cannot be detected directly or only at high costs. Therefore 
methods from the field of Artificial Intelligence and statistics are combined in a Virtual Artificial Sensor 
(VAS) to create a basis for important Electrical Control Unit (ECU) algorithms. The influence of 
databases with an extremely uneven data distribution and data spectrums of high-variance is 
investigated. Standard measurements from various engines are processed to ensure a high 
generalizability of the model and the comparability to the results of the ECU. A noticeable increase of 
robustness against interferences resulting in an improved quality and a reduced parameterization 
effort is achieved by using the VAS.
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Introduction
Increasing the efficiency of gasoline engines to 
reduce both, emissions and consumption, call 
for reliable detection of abnormal combustion 
phenomena in order to ensure optimum 
operation.

Due to the continuing development of internal 
combustion engines, such as downsizing, turbo 
charging, and multiple fuel injections, engines 
and their combustion processes are becoming 
more and more complex and as a result also 
the control and calibration is increasingly 
demanding. A consequence of this is an
increased probability of abnormal combustion 
occurrences (e.g. knocking, pre-ignitions or 
misfiring), which, amongst others, have a 
negative influence on the engine efficiency and 
on the exhaust gas composition. Best possible 
detection of abnormal combustion phenomena 
requires physical measurement values, which 
cannot be determined directly by the sensors to 
do the extreme physical stress and the short
service life, or is anything, only at very high 

costs. The automotive industry therefore uses 
hard-wearing, durable and cost-efficient
sensors that detect the effects of abnormal 
combustions indirectly. In consequence of the 
indirect measurement method useful 
information is superposed by electrical and 
mechanical disturbances, which impair the 
quality of the combustion analysis. The 
variance of these interferences is an additional 
challenge that aggravates a robust and 
generalizable combustion analysis and reaches
the performance limits of current detection 
methods.

The evaluation of the sensor signal determined 
in this way is frequently done according to the 
state-of-the-art principle of the reference value 
model. In doing so, the combustion to be 
evaluated is compared with the preceding 
combustions. The methods of digital signal 
processing, such as filtering and integrating in 
fixed time intervals, serve to determine the 
decisive features of every combustion process.
The Final evaluation of the combustion is 
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performed by using fixed and calibrated 
thresholds.

Related Work
The feasibility of using Support Vector 
Machines (SVM) and Artificial Neural Networks 
(ANN) to detect knocking by means of 
combustion analysis was investigated in the 
course of a research project between the 
Robert Bosch GmbH and the Institute for 
Integrated Sensor Systems at the Technical 
University of Kaiserslautern ([2],[3]). The 
frequency points, determined by applying a 
Fast Fourier Transformation (FFT) on the 
structure borne noise signal from the engine, 
serve as feature space in this research project. 
In the process, the frequency spectrum is 
restricted to the specified bandwidth of the used 
structure-borne noise sensor that ranges from 5 
to 25 kHz. The thus obtained results show an 
increased robustness towards interferences.

The calculation of the used features, the 
parameterization effort for the modelling, and 
the required specialized knowledge in the field 
of artificial intelligence, as well as the 
traceability of the complex non-linear models 
renders the use of this method impossible for
today’s calibration processes and for Electronic 
Control Units of the current generation.

A decrease of the computational effort relating 
to the results of the already mentioned research 
project by reducing the model complexity for an 
implementation of the algorithms on a Rapid-
Prototyping-System was investigated as 
preliminary stage to the VAS in [1]. The quality 
of the results that were achieved by using linear 
models is comparable to those of the complex 
non-linear models of the research project. 

VAS Approach
The VAS approach is a variable and modular 
system structure that expands the linear model 
for the regression analysis from [1], which has 
already been verified with regard to its 
efficiency, by a non-linear model part. Here, the 
non-linear functions are adjusted to the 
boundary conditions, i.e. the computational 
performance, and the arithmetic of the future 
ECU generation by Robert Bosch GmbH. In 
contrast to the linear model, the fixed signal 
processing is designed to be variable and 
intelligent. Self-adapting thresholds instead of 
fixed thresholds are used in the detection 
algorithm in the VAS. By calculating adjusted 

quality criteria the training is (partly) automated, 
since variable model parameters are optimized
on the basis of these criteria.

The digital signal processing is modified such 
that the VAS does not use all available input 
data or features for modelling, but rather
identifies suitable features during the training 
process using a time-frequency analysis, which 
already show an increased correlation with the 
target value. Thereby interferences are reduced
already prior to the training of the model.

The linear model of the VAS describes the 
basic system behaviour. The advantages are
reduced memory requirement and
computational effort for the model. Moreover, 
the linear model usually has a higher 
generalization capability compared to the very 
specific non-linear model, which tends towards
overfitting during the training process due to the 
unevenly distributed database that are 
characteristic of combustion analysis.

The non-linear expansion compensates 
interferences on the model and is only used if 
no sufficient quality can be achieved by means 
of the linear model.

Adjustment of the detection method to the 
respective problem is achieved by an algorithm,
the basic functions of which follow the lines of 
the method regarding the pressure-based 
knock detection described in [4]. Adaptation of 
the detection threshold to the operating-point 
dependent engine behaviour is achieved by 
including the basic characteristics of the 
combustion engine. This ensures more 
sensitive detection while at the same time 
reducing the calibration effort.

A combination of criteria from the fields of 
classification, regression, and combustion 
analysis is used for the evaluation of the 
detection quality. Thereby, it is possible to 
perform further grading, although the 
classification is ideal, which in turn for the 
determination of the best possible model for the 
improvement in engine efficiency.

The described variable and modular structure 
allows for an adaptation of the VAS to further 
conceptual formulations of the combustion 
analysis, such as misfire detection or pre-
ignition detection. An application for the 
classification beyond the field of combustion 
analysis, for example for the field of language 
or object detection, is thereby also ensured, 
without performing further generalizations of the 
VAS model.
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Implementation
The current implementation stage of the VAS 
under Matlab comprises two areas, the VAS 
structure and the VAS training, which will be 
described below using the example of knock 
detection. The used data, for training and 
verification, is based on standard 
measurements for the calibration of the knock 
detection. These measurements are taken at 
different operating points, which are defined by 
engine speed and load. The structure-borne 
noise signal of the engine, scanned with 200
kHz, serves as input for the VAS. The reference 
value for the knock detection is the maximum 
value of the band-pass filtered cylinder 
pressure signal in a frequency range of 4 to 40 
kHz.

The VAS structure comprises several modules
that are divided into two groups, VAS periphery 
and VAS core (shown in Fig. 1).

The VAS periphery is the interface to other 
components of the engine management, such
as the sensor technology at the input and the 
control at the output of the VAS. The main 
modules of the periphery are the digital signal 
processing of the sensor signals and the 
detection algorithms. The components are 
exchangeable and their characteristics can be 
adjusted to the respective tasks. 

The portfolio of the implemented signal 
processing for calculating the features 
comprises, amongst others, filtering, FFT, and 
Wavelet Transformation. In the process, special 
importance is attached to the time-frequency 
transformations, since they are used during the 
training process for an automated reduction of 
the features.

The detection algorithms are essentially 
influenced by a can- and a must-detection 
threshold. In the value range between these 
two thresholds, the finally effective threshold 
adapts itself. In the process, the basic 
characteristic of the combustion, formed by 
using the mean value of all not detected 
combustions (not knocking), is added to the 
can-detection threshold, while the must-
detection threshold limits it to its maximum 
value.

The VAS core serves the modelling and is 
composed of a linear basic model and a non-
linear correction model.

The linear model part is mathematically 
determined by a principal component analysis
(cp. [5]) that always generates the same model 

for a fixed database. The model characteristic 
can be depicted and evaluated by experts in the 
field of combustion analysis regarding its
functionality and quality.

The correction model, consisting of an ANN 
with Radial Basis Functions as activation, 
compensates non-linear influences that are 
caused, amongst others, by interferences. The 
intervention on the result of the linear model is 
limited in order to protect the system against 
irregular behaviour, which can occur, for 
example, in case of new unknown input data. 
Due to computational effort, the amount of 
artificial neurons is limited to a maximum of ten.

Fig. 1. Graph of the VAS structure where the 
reference value (dashed line) is only used during the 
training process

The VAS training is done in three steps, starting 
from the signal processing to the linear basic 
model to the non-linear correction model. For 
this, 50% of the overall database is used.

In the first step, those frequency ranges that 
contain relevant information are identified by 
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means of a time-frequency analysis. For every 
detected frequency range, additionally a time 
range is determined by thresholds to reduce 
interferences on the useful signal (see Fig. 2).

Fig. 2. Graph of time-frequency analysis for knock 
detection to reduce interferences. The identified
frequency and time range is marked.

The second step concerns the training of the 
linear model, which is determined by a principal 
component analysis of the training database 
followed by a linear regression of the main 
components representing knocking.

During the third and final step, the non-linear 
model is trained. In doing so, the difference 
between target value and output of the linear 
model constitutes the new target value and the 
features from the training of the linear model 
are again used as input here. This training is 
optimized to correct data points with a high 
deviation. The Levenberg-Marquardt algorithm
(cp. [6]) is used for the training of the ANN. This 
algorithm is suitable for databases that are 
statistically unequally distributed. 

Results
As compared to the results of the current knock 
detection and to the results of [1] and [2], the 
results of the VAS show an enhanced
correlation (see Fig. 3) and an increase in 
particular of the knock detection quality (see 
Fig. 4).

The computational effort for the algorithms, 
especially for the signal processing, is 
lessened. The combination of quality criteria
from the field of regression analysis and proven 
criteria from the field of combustion analysis 
leads to an improved training process and to 
better results.

Fig. 3.

Correlation graph for the various investigated knock detection methods at different engine speeds
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Fig. 4.

Examples of output (Peak*) of the linear model and the VAS correlated with the reference value (Peak) for
different engine speeds with regression line (solid) and standard deviation (dashed)
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Conclusion and Future Work
The enhanced knock detection quality, with 
simultaneous lesser computational effort, that is 
achieved by the VAS brings the approach of a 
detection of abnormal combustion phenomena 
by means of the sample detection methods 
closer to the series production application. 

Ongoing projects investigate whether it is 
possible to lessen the computational effort of 
the signal processing by using automatically 
calculated filters instead of transformations, 
while keeping up the quality. Implementing the 
VAS algorithms on the Rapid-Prototyping 
System according to [1] will be effectuated in a 
next step, so as to confirm the simulation 
results during real engine operation. The 
applicability of the VAS for the detection further 
combustion abnormalities will be verified on the 
basis of the misfire detection.

References
[1] M. Biehl, S. Kempf, A. König, Messtechnische 

Hardwareplattform zur Entwicklung neuer 
Motorsteuergeräte-Algorithmen am Beispiel der 
Klopferkennung, XXV. Messtechnisches 
Symposium, 39-50 (2011); ISBN 978-3-8440-
0388-8

[2] K. Iswandy, S. Kempf, A. König, R. Sloboda, 
Robustheitsuntersuchung eines SVM-basierten 
Klopferkennungsverfahrens, Motortechnische 
Zeitschrift, no. 7-8, 486-491 (2010); ISSN 0024-
8525 10814

[3] K. Iswandy, A. König, Hybrid Virtual Sensor 
Based on RBFN or SVR Compared for an 
Embedded Application, Knowledge-Based and 
Intelligent Information and Engineering Systems,
335-344 (2011); ISBN 978-3-642-23862-8

[4] S. Kempf, J. Göbels, R. Sloboda,
Zylinderdruckbasierte Klopfregelung zur 
Bewertung von Klopfregelungsapplikationen und 
automatisierten Zündwinkelapplikationen,
Klopfregelung für Ottomotoren II, 225-244 (2006); 
ISBN 978-3-8169-2674-0

[5] A. Handl, Multivariante Analysemethoden, 
Springer Verlag, 180-187 (2010), ISBN 978-3-
642-14986-3

[6] L. Rutkowski, Computational Intelligence, 
Springer Verlag, 221-222 (2008), ISBN 978-3-
540-76287-4

DOI 10.5162/sensor2013/C1.2

AMA Conferences 2013 - SENSOR 2013, OPTO 2013, IRS  2013 3452




