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Abstract 

We use gas sensors with temperature cycled operation (TCO) for the detection of (E)-hexenal in the 
concentration range of 0.4 to 2.0 ppm and ethanol in the concentration range 2.4 to 12 ppm. We are 
able to distinguish between these two reducing organic vapors in the ppm range and even to quantify 
(E)-hexenal under any ethanol presence in this range. This was achieved by calculating linear 
discriminant functions from the sensor reaction pattern to a stationary gas mixture flow. The obtained 
LDA-coefficients, subsequently applied to the same feature set obtained at another time, can classify 
the gas mixture with respect to these components in the mentioned concentration range. The 
temperature profile during cycling operation was selected due to our prior experience with the used 
sensor types.  
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Introduction 

When plants suffer cellular damage, e.g. from 
insects [1] or microbes [2], they release 
gaseous substances, among them (E)-hexenal. 
These substances are the same for all plants 
since these events trigger the same lipoxy-
genase pathway. Monitoring the emissions thus 
can not only indicate health or damage of 
vegetables but also the quality of fruit [3]. The 
use of gas sensors for their detection instead of 
e.g. gas chromatography is a cost effective 
method opening wider application ranges, for 
example in food processing [4, 5]. Neverthe-
less, improvement is required since other orga-
nic vapors, e.g. ethanol as bacterial metabolite 
or component of cleaning agents in transport 
and storage, are also present in the application 
and interfere with the specific metabolite-
release driven sensor reaction. There are 
approaches in literature to distinguish between 
different organic vapors by using an array of 
multiple sensor elements [4, 6]. Nevertheless 
such a multisensor array is always increasing 
the expenses; furthermore drift effects and 
sensor instabilities are cumulating. Instead of a 
multisensory approach we use a virtual sensor 
array [7] based on temperature cycled opera-
tion (TCO). In this context, virtual means that 
only one sensing element, periodically operated 
at various temperature levels, is required in-
stead of a sensing array with different materials 

and/or at different substrate temperatures. TCO 
can be used to increase selectivity by sub-
sequent or online data processing, but also 
reduces sensor resistance drift during measure-
ment [7]. We could show in a previous work, 
that even the detection of small concentrations 
(ethene at ppb levels) against a strong back-
ground (methane and carbon monoxide) are 
possible using a TCO virtual multisensor [8].  

Sensor selection  

We started setting up a virtual multisensor array 
by selecting an adequate sensor type. For this 
purpose, commercially available sensors have 
been compared with respect to their sensitivity 
characteristics. We also took into account the 
mechanical and electrical robustness; therefore, 
only ceramic plate type sensors were 
considered. Fig. 1 shows the results for (E)-
hexenal exposure at 4 V heating voltage and 
30% relative humidity (r.H.) for a sensor subset 
which was simultaneously operated under the 
same conditions. Finally, UST GGS 1330 T 
type [5], a robust SnO2 based thick film type 
sensor, seemed to be most suitable for this 
purpose. At 4 V heater voltage (corresponding 
to approx. 370°C sensor temperature), a sensor 
response of 29% increase of conductivity at 2 
ppm and 34% at 3 ppm (E)-hexenal was 
recorded; the nearest type, a GGS 5330 T with 
a response of 25% and 31%, respectively, is 
from the same manufacturer. 
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Fig. 1. Relative conductivity change at two low (E)-
hexenal concentrations for 6 sensor types at fixed 
heater voltage and constant humidity. “Fig” are 
sensor types from Figaro Inc, Japan; “UST” from 
Umweltsensortechnik GmbH, Germany. 

Sensor control and data acquisition 

In order to operate semiconducting gas sensor 
elements, a modular and versatile platform (3S-
toolbox, [10]) was used. This platform was 
designed especially for (field) tests and 
supports a variety of commercially available 
semiconducting gas sensors. Via its graphical 
user interface different parametrizable tempera-
ture cycles and – depending on the combined 
set-up of the toolbox itself – application-specific 
flow cycles can be configured. 

The core unit of the platform is a base-board 
with a powerful micro-controller communicating 
with external modules in a master-slave-con-
figuration. The base-board is able to carry up to 
four gas sensor modules operating the actual 
sensing elements and additionally combined 
sensor/actor-modules for flow-cycle implement-
tation and ambient condition monitoring.  

The platform outputs the sensor raw data 
(basically the measured voltages) which can 
easily be transformed into resistances or 
conductances. Via USB the platform is 
connected to a standard PC where the live data 
visualization and the storage is carried out.  

Within the scope of the measurements in this 
paper, a platform with the following specification 
was used: 

The temperature control allows a set-point 
accuracy of 2°C within an overall temperature 
range of 100 to 600 °C. The set-point can be 
updated every 200ms. 

The read-out circuit features a minimum 
sampling time of 1 ms with a measurement 
voltage accuracy of 5 mV (using a 10-bit-ADC). 
The dynamic range of the read-out circuit can 
be adjusted according to the particular scenario 
under consideration. 

Temperature cycled operation (TCO) 

We parameterized a measurement system 
based on this 3S-toolbox [10] to repeat sub-
sequent sensor temperature levels of 420°C, 
240°C, and 330°C with 12 s duration each. 
These were similar to prior TCO experiments 
with this sensor type [11], although with a 
slightly reduced temperature cycle duration (36 
s instead of 40 s) with a data acquisition rate of 
10 Hz. The components of the data acquisition 
circuit for the sensor conductance measure-
ment were chosen empirically to best match the 
conversion unit of the 3S-toolbox.  

Gas composition and exposition 

To obtain the sensor reaction data the sensors 
were placed in a gas-tight chamber and 
exposed to the programmed gas flow mixed 
from purified air (50% r.h., CO2-free) with test 
gases (pressurized air/ethanol and N2/(E)-
hexenal mixtures) using mass flow controllers 
(MFC). A constant flow rate of 500 sccm was 
used during the measurements; the sensor was 
exposed to each gas mixture for 15 min, 
followed by 45 min exposure to zero air.  

Results and discussion 

For the measurements in the scope of this 
paper, the above-mentioned platform has been 
equipped with two modules operating UST gas 
sensors of type GGS 1330. Thus, the sensors 
have been operated both statically, i.e. at 
constant temperature, as well as dynamically 
using TCO. 

Fig. 2 shows the normalized dynamic sensor 
response S to various concentrations of (E)-
hexenal and ethanol resulting from the sensor 
raw conductance (digitized impedance conver-
ter readout). This normalized dynamic sensor 
response S is calculated from the raw 
conductance G according to eq. 1. 
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Fig. 2.  Normalized dynamic sensor response. Data 
were acquired at a rate of 10 Hz. Grey areas indicate 
the time intervals selected for feature extraction 
required for the first evaluation with LDA. 

A data subset is used to perform a linear 
discriminant analysis (LDA) as a starting point. 
The subset is selected among those 
temperature cycles, which belong to phases of 
constant gas concentration and at least 2 
repetitions of the same sensor resistance curve, 
in order to ensure proper working condition. For 
the LDA described here 32 different gas 
compositions (including zero air) were selected. 
We were able to show that the initially selected 
features are appropriate for separation of 
different concentrations of pure gases (fig. 3). 
Each circle or dot represents one temperature 
cycle data set projected into the dimensionally 
reduced space spanned by the discriminant 
function vectors formed as linear combinations 
of the mentioned features. Application of the 
obtained discriminant function coefficients to 
data obtained from further measurements using 
the same temperature cycle would allow 
identification of the gas composition, e.g. by 
using a nearest neighbor classifier. 

Further improvement of resolution was 
achieved in two subsequent steps. First, 
redefining the ranges from which secondary 
features are calculated for LDA with respect to 
the geometric nature of the chosen parameters 
(fig. 4), increasing the number of features from 
12 to 27. Second, the 3rd discriminant function 
calculated by the LDA was also taken into 
account. Both additions increase the per-
formance considerably because all information 
contained in the cycle is taken into account and 
the feature space is exploited better. 

 

Fig. 3.  LDA scatter plot (one circle represents one 
temperature cycle) discriminating pure (E)-hexenal 
and ethanol exposures as well as mixtures of both 
gases with a single UST GGS 1330 sensor. Legend: 
see Table 1. 

 

 Ethanol/ppm 
0 2.4 4.8 7.2 9.6 12

(E
)-hexenal/ppm

 

0 0 1 2 3 4 5 

0.4 10 11 12 13 14 15

0.8 20 21 22 23 24 25

1.2 30 31 32 33 34 35

1.6   42 43 44 45

2.0   52 53 54 55

Tab. 1: Assignment of LDA scatter plot data to 
concentration combinations. The colored numbers 
refer to the dots’ color in fig.5. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  Increasing and expanding time intervals, 3 
within each temperature set point level for the 
extraction of 3 features each, resulted in a total of 27 
secondary features per cycle. 

For the first step we divided the 3 temperature 
cycle phases, i.e. temperature set points into 3 
ranges each with respect to their different 
shapes: a narrow, rapid and steep change at 
the beginning, i.e. immediately after a tempera-
ture change; then, a section with pronounced 
curvature and, finally, the decay-like long end in 
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order to obtain prominent contributions of the 
most suitable features. During this second 
adaption, it turned out that decreasing the 
number of features taken for the LDA stepwise 
did not visibly reduce the (improved) resolution. 
Thus, the overall result of these mathematical 
operations consisted of first increasing the 
number of time intervals and secondary 
features at the same time, but then reducing the 
number of features by selecting only those with 
the most significant contributions. In the end, 
the number of secondary features remains at 
the initial value thus keeping the numerical 
effort for the evaluation constant.  

The 12 most significant features selected were 
the norm for intervals 2, 3, 5, 6, 8, and 9 and 
the mean values for intervals 2, 3, 5, 6, 8, and 
9. The numbering scheme is “from left to right” 
in the time course of the cycles, i.e. mv2 means 
the mean value of the second time interval, 
ranging from .6 to 2.0 s within the 36 s cycle. 
Thus, 6 time intervals were suitable for in-
creasing the selectivity; surprisingly, the secant 
as the most evident dynamic feature, does not 
provide significant input for the differentiation of 
the gases. Note that the number of cycles 
shown in fig. 4 has been greatly reduced for 
clarity showing only a subset of different gas 
mixtures. Also, fig. 4 shows the raw conduc-
tance data, not normalized values as in fig. 2. 

These improvements in LDA setup resulted in a 
clear distinction between several sub-ppm 
concentrations of (E)-hexenal even for varying 
concentrations of ethanol. Though regions 
without ethanol are separate, the different 
admixtures of ethanol do not lead to an overlap 
even for the sub-ppm ranges of (E)-hexenal as 
shown in fig. 5. This ability of the sensor 
together with the evaluation algorithm to 
quantify (E)-hexenal holds up even for 10 fold 
molar excess of ethanol.  

 

 

 

 

 

 

 

 

 
Fig. 5.  Improved LDA scatter plot, showing the 
possibility to group hexenal concentration features 
even with differing ethanol concentrations. However, 
gas exposures with hexenal only (no ethanol 
background) are separated. Legend: see Table 1.  

The increase in selectivity by employing the 3rd 
LDA dimension can be estimated from the 
scree plot (fig. 6), where the bars for each 
dimension show their relative contribution. To 
depict these improvements, fig. 5 shows the 
projection of the discriminant function space for 
the first two dimensions. Although the clusters 
of data points for low concentrations of hexenal 
are not compact but actually divided into two 
compact regions (dark green circles represent-
ting 400 ppb hexenal).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.  Scree plot showing contributions of 
discriminant function vectors spanning the feature 
space 

An estimate of the reliability of the processing 
comprises several parts. The one to be 
emphasized here is the stability of the 
positioning of TCO data points during a 
constant gas offer. We assume a minimum of 3 
subsequent cycles under stationary gas flow 
required for valid feature extraction, but here we 
took at least 16 into calculation. The steadiness 
trajectories of the cycles’ footprints, projected 
onto the axes of the space spanned by the 
discriminant functions obtained in this way, as 
they show a stable course, are used as 
indicators of this condition. 

Conclusion 

We could show that temperature cycled 
operation of single semiconductor gas sensors 
allows identification and quantification of low 
concentrations of (E)-hexenal in the sub-ppm 
range against a background of ethanol at much 
higher concentrations. The performance 
depends not only on the chosen temperature 
cycle but also on the evaluation algorithm with 
features extracted from the sensor raw data. A 
systematic approach to selecting suitable 
sensors, designing an optimal temperature 
cycle and an appropriate data evaluation allows 
efficient development of low cost gas sensor 
systems for various applications.  
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