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the angular width of the diffracted peak at the 
half maximum (FWHM) for the diffraction angle 
2θ. In addition, further information about the 
particles size and shape was obtained by using  
scanning electron microscope (SEM). For SEM 
analysis, a thin conducting Pt layer (thickness 
1–2 nm) was coated by using DC sputter.  

To activate the gas sensing properties and to 
lessen the power consumption of the sensor, 
Si-based micro-heater was adapted, which was 
fabricated by using CMOS compatible MEMS 
processes. On these substrates SnO2 nano-
powders were deposited by screen printing 
technique.  

Gas sensing properties were measured using a 
computer-controlled characterization system. 
The resistances of the sensor materials upon 
the Si micromachined micro-heater were 
measured. The response, R, is given by the 
rate of change in the resistance to the initial 
resistance, R = ΔR/R0= |Rg-R0|/R0, where Rg 
and R0 are the resistance in the test gas and in 
air, respectively.   

Results and Discussion  
Fig. 1 shows the XRD patterns of the doped 
SnO2 nano-powders. All peaks belong to SnO2 
phase except one, which corresponds to Sn2O3 
phase. The calculated average grain size of the 
SnO2 nano-powders using Scherrer formula 
was 57±6 nm, which grain size was proper to 
detect gas. 

 
Fig. 1. XRD patterns of tin oxide nano-powders. * 
corresponds to the Sn2O3 phase. 
 

Fig. 2 presents the SEM image and energy 
dispersive X-ray (EDAX) analysis result of the 
SnO2 thick films on Si substrate, From the Fig. 2 
(a), the distribution of the grain size of the SnO2 
nano-powders was uniform and nano-powders 
were mainly consisted of Sn and O element, as 
shown in Fig. 2 (b). 

 

 
Fig.2. (a) SEM image and (b) EDAX analysis 
result of tin oxide nano-powders. 
 

In the structure of the micro-heater, the 
resistances of two semi-circular Pt heaters are 
connected to the track for power supply. The 
resistance of each heating element becomes an 
electrically equal Wheatstone-bridge, which is 
divided in half by the heat-spreading structure. 
The generated heat diffuses from the circled 
heating elements through the heat spreaders to 
promote thermal uniformity at the central area 
where the sensing material will be located, 
which is thermally isolated by air using a bridge 
structure. The power consumption of the micro-
heater device was simulated using the 
commercial finite element method (FEM)  
software (COMSOL). In the simulation, 400 oC 
temperature and the uniform thermal 
distribution at the center of the micro-heater 
were obtained in the expanse of 10 mW power 
consumption as shown in Fig. 3.  

 

 
Fig. 3. Temperature distribution of micro-heater 
with 10 mW power consumption by using commercial 
finite element method simulation software 
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Fig. 7. C2H5OH gas sensing properties of the 
fabricated micro gas sensor with 35 mW power 
consumption 

 

Summary  
Micro C2H5OH gas sensor was fabricated 
based on micro-heater using tin oxide nano-
powders with low power consumption and high 
sensitivity. The device was fabricated by using 
CMOS compatible MEMS process and the 
sensing material was deposited by using screen 
printing technique. Micro gas sensor showed 
substantial sensitivity down to 0.5 ppm alcohol 
at low power consumption (35 mW). 
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