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Abstract: 
An investigation of the electrical and hydrogen sensing properties of a novel Schottky diode based on 
a nanostructured lanthanum oxide-molybdenum oxide compound is presented herein. Molybdenum 
oxide (MoO3) nanoplatelets were grown on SiC substrates via thermal evaporation which was then 
subsequently coated with lanthanum oxide (La2O3) by RF sputtering. The current-voltage 
characteristics and hydrogen sensing performance (change in barrier height and sensitivity as well as 
the dynamic response) were examined from 25 to 300°C. At 180°C, a voltage shift of 2.23V was 
measured from the sensor while exposed to 1% hydrogen gas under a 100 µA constant reverse bias 
current. The results indicate that the presence of a La2O3 thin layer substantially improves the 
hydrogen sensitivity of the MoO3 nanoplatelets.  
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Introduction 
Focus on hydrogen research has grown 
exponentially over the past decade as it has 
been proposed as one of the cleanest 
resources of energy as a fuel [1, 2]. However, 
the flammable nature of hydrogen gas has 
raised the need to sense and monitor this 
substance in concentrations down to the parts 
per million range for safety concerns in case of 
leakage. 

Schottky diode based sensors using a 
nanostructured metal oxide sensing layer has 
shown high sensitivity towards reducing gases 
(especially hydrogen) [3-8]. The adsorption and 
dissociation of hydrogen changes the work 
function of the Schottky contact metal and 
modulates the Schottky-barrier. Different types 
of metal oxide materials including RuO2, ZnO, 
WO3 and MoO3 with unique morphological 
structures have been examined over the past 
few years [3-8]. Among these, MoO3 has been 
recognized as one of the most sensitive and 
extremely volatile materials due to its low 
melting temperature and low thermal dynamic 
stability. This implies that in MoO3 the oxygen 
vacancies can diffuse from the interior of the 

material to the surface and vice versa, and the 
bulk of the oxide has to reach an equilibrium 
state with ambient oxygen [9]. This is a problem 
as the oxygen vacancies are the main bulk 
point defects and play a vital role in the 
hydrogen gas sensing mechanism. It means 
that to attain strong sensing properties in metal 
oxides, it is necessary to use materials, in 
which the equilibrium of oxygen diffusion is 
constant and minimised.  

In this work, we aim to achieve this by 
depositing La2O3 as a highly thermal stable 
material onto MoO3 [9]. Many authors have also 
used this material to dope and improve the 
characteristics of other oxides (such as TiO2 
and SnO2) with La2O3 for sensing [10, 11]. In 
this work, we will examine the effect of a thin 
layer of this material on the hydrogen sensing 
performance of the MoO3 nanoplatelet sensor. 

Experimental 
Nanostructured MoO3 thin films were deposited 
on n-type 6H-SiC substrates (Tankeblue) using 
the thermal evaporation deposition technique. 
Cleaning, dicing and preparation of the SiC 
substrates, formation of ohmic and Schottky 
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The sensor based on La2O3 coated MoO3 
performs significantly better due to the good 
distribution and coverage of La, which acts as a 
catalyst. This was also observed by Kim et al. 
[11] with improved CO2 sensitivity of lanthanum 
oxide coated SnO2 films. The results obtained 
in the present work suggest that the use of 
La2O3 as a dopant in the base oxide is a useful 
way to improve the sensitivity, as observed by 
Zhuiykov et al. [13] with La2O3-RuO2 films, 
provided that the introduction of La2O3 does not 
lead to a significant change in the orthorhombic 
structure.  

In a Schottky diode, the reverse J-V 
characteristic equation  is given in eq. (1) [14]: 
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where A** is the effective Richardson constant, 
T is the absolute temperature, q is the charge 
constant, φB0 is the barrier height and k is the 
Boltzmann’s constant, εs is the permittivity of 
the material and ξm is the enhanced localized 
electric field in the nanostructure, which is a 
function of the reverse bias voltage VR for 
nanostructured materials [8] as given by eq. (2): 
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where ND is the density of free carriers and ψb 
is the built in potential. γa is the enhancement 
factor. The magnitude of the enhancement 
factor can be determined by curve fitting or 
estimated from the geometry and the 
dimensions of the nanostructures using models 
such as sphere on the post [8, 15]: 

m
a ξ

ξ
γ γ≈

 
(3)

The enhancement of electric field occurs at the 
edges of the nanostructures as the Schottky 
diodes are operated under reverse bias. This 
fundamental phenenomon allows Schottky 
effect of the lowering of in the barrier height to 
be amplified into a larger signal that is 
respectively measured [8]. The addition of the 
catalytic properties from the La2O3 coating may 
explain why the sensor in Fig 2(a) has 
significantly higher sensitivity than that of Fig 
2(a) over the whole range of temperatures. 

Fig. 4(a) shows the dynamic response of the 
La2O3 coated sensor towards hydrogen with 
different concentrations at 180°C while the 

sensor was biased at constant reverse current 
of 100 µA. For comparison, the dynamic 
response of the pure MoO3 nanoplatelet sensor 
is shown in Fig. 4(b) [8]. Table 1 shows the 
measured voltage shifts of both sensors upon 
exposure to hydrogen at the different 
concentrations. 

 

 
Fig. 4. Dynamic response of the sensors based on 
(a) La2O3-MoO3 and (b) MoO3 nanoplatelets towards 
hydrogen with different concentrations at 180°C. 

Tab. 1: Voltage shifts for (a) La2O3-MoO3 and (b) 
MoO3 nanoplatelet sensors towards hydrogen with 
different concentrations at 180°C. 

Se
ns

or
 Voltage shift (V) 

0.06% 0.125% 0.25% 0.5% 1% 

(a) 0.39 0.57 0.75 1.23 2.23 

(b) 0.27 0.48 0.70 0.91 1.34 
 

The results from the dynamic performance 
indicate that the La2O3 coated sensor has 
superior sensing properties towards hydrogen 
gas and the MoO3 nanoplatelets provide a high 
surface area-to-volume platform for the sensor.  

Conclusions 
In this work, we compared the hydrogen 
sensing properties of MoO3 nanoplatelets with 
and without the coating of a thin layer of La2O3. 
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The structural analysis indicates that the 
deposited La2O3 layer may be amorphous. The 
hydrogen sensing performance clearly shows 
significant improvement, demonstrating the 
important catalytic effect of La2O3 in MoO3 
Schottky sensors.  
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