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Abstract: 
In this work, a glassy carbon electrode modified with poly-sulfosalicylic acid (PSA/GCE) was prepared 
by electropolymerization and applied for the determination of L-Tryptophan (L-Trp) in the presence of 
ascorbic acid and dopamine. The morphologies and interface properties of PSA film were examined 
by scanning electron microscopy and electrochemical impedance spectroscopy.The electrocatalytic 
oxidation of L-Trp was investigated on the PSA/GCE using cyclic voltammetry (CV) and differential 
pulse voltammetry (DPV). The proposed method exhibited wide linear response of 5×10-8 to 4×10-4 M 
with low detection limit and high selectivity, making it suitable for the analytical purpose. 
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Introduction 
L-Tryptophan (L-Trp) is one of essential amino 
acids to human and a vital constituent of protein 
biosynthesis of living organisms [1]. As a 
biochemical precursor for neurotransmitter 
serotonin and neurohormone melatonin [2], it is 
very essential for people with sleep deprivation, 
anxiety and mood enhancement [3]. Due to the 
scarce presence of tryptophan in vegetables, L-
Trp has been commonly added to dietary, food 
products as food fortifier or pharmaceutical 
formulations. When improperly metabolized, a 
waste product will be created in the brain to 
cause hallucinations and delusions [4]. So, it is 
necessary to establish a simple, accurate, rapid 
and inexpensive method for the determination 
of L-Trp in food, pharmaceutical products and 
biological fluids. 

Some methods have been developed for the 
determination of L-Trp, such as spectroscopy 
[5], high-performance liquid chromatography [6], 
fluorometric methods [7], capillary 
electrophoresis [8] and electroanalysis [9]. 
Among them, electrochemical techniques have 
gained much more attention for its high 
sensitivity, high accuracy, simple operation 
mode and low cost. However, the voltammetric 
response of L-Trp at bare electrode is not 
optimal because of sluggish electron transfer 
processes and high overpotential [10]. Hence, 
many efforts have been devoted to promoting 
the electron transfer and reducing the 
overpotential for the electrochemical oxidation 
of L-Trp [11-16]. 

Recently, various modified electrodes have 
been reported for the determination of L-Trp, 
such as poly 4-aminobenzoic acid [11], poly 
glutamic acid [12], 1-[4-(ferrocenyl ethynyl) 
phenyl]-1-ethanone [13], Ni (II)/ACDA–AuNP–
Au [14], gold nanoparticles [15] and nano-
TiO2/ferrocence carboxylic acid [16]. Among 
these electrodes, polymer film modified 
electrodes show unique properties and an 
enhanced response for the application in 
samples [17]. Since the thickness, permeation 
and charge transport characteristics of the 
polymeric films can be adjusted by the potential 
and current applied, the fabrication of 
conducting polymer film is flexible and 
controlled [18]. 

In this work, a novel sensor of L-Trp based on 
poly (sulfosalicylic acid) film (PSA) modified 
glassy carbon electrode by electrochemical 
polymerization (PAS/GCE) was developed. 
Because of high electron density of carbonyl 
and sulfonic groups in sulfosalicylic acid 
molecule (COO− and SO3

2–), the PSA film has 
high concentrations of negatively-charged 
surface-functional groups. The modified 
electrode showed excellent electrocatalytic 
properties with obvious reduction of 
overpotential and enhancement of oxidation 
current and was applied for the detection of L-
Trp coexisting with some possible interfering 
substances. 
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Experiment 
Electrochemical measurements were carried 
out on a CHI 660C electrochemical workstation 
(Shanghai Chenhua Co., Ltd., China) with a 
conventional three-electrode system. A clean 
GCE was immersed in 0.1 M PBS (pH 5.5) 
containing 10mM sulfosalicylic acid using cyclic 
voltammetry from -1.0 to 2.0 V at 100mv s-1 for 
30 cycles and washed with double distilled 
water for use. 

Characterization 
To investigate the morphology of the modified 
electrode, we performed scanning electron 
microscope (SEM). Fig. 1 shows the typical 
morphology of PSA film, indicating that the film 
has a fine cluster-like structure. SEM image of 
PSA film was very uniform, which verified that 
the PSA film was successfully polymerized on 
the electrode surface and the structure of PSA 
film could improve the effective electrode 
surface. 

Electrochemical impedance spectroscopy (EIS) 
was used as a powerful technique to study the 
interface properties of the electrode surfaces. 
Fig. 2 shows the typical Nyquist diagrams of the 
EIS in 5.0 mM [Fe(CN)6]3–/4– solution at the bare 
GCE (a), PSA/GCE (b). Compared with the 
bare GCE (curve a), the electron-transfer 
resistance (Ret) for PSA/GCE was larger (curve 
b).This may be ascribed to the electrostatic 
repulsion force between the negatively charged 
[Fe(CN)6]3–/4–� and poly (sulfosalicylic acid) film 
[19]. The change of the Ret value suggests that 
the PSA film is assembled onto the surface of 
GCE. 

Electrochemical behavior of L-Trp at 
PSA/GCE  
The electrocatalytic activity of PSA/GCE was 
demonstrated by a comparison of the 
differential pulse voltammograms (DPVs) of 
different electrodes in 0.1 M PBS (pH 3.5). Fig. 
3 shows DPVs of 1×10-4 M L-Trp at the bare 
GCE (b), PSA/GCE(c). It can be seen that the 
oxidation peak current of L-Trp at PSA/GCE is 
enhanced and the peak is sharper than the 
bare GCE (curve b). The increase of peak 
current maybe attributed to the electrostatic 
interaction between the negatively charged 
PSA and the positively charged L-Trp in 0.1 M 
PBS (pH 3.5) [12]. Meanwhile, the peak 
potential shifted negatively from 0.91V to 0.79V, 
indicating that the PSA film has good electro- 
catalytic activity towards L-Trp. 

Calibration curve and interferences 
Under the optimum conditions, the 
electrochemical behaviors of different 
concentrations of L-Trp were studied. From Fig. 
4(A), the change of DPVs indicates that the 
oxidative peak current (Ip) has linear 
relationship with the concentration (c) of L-Trp. 
In the range from 5.0×10−8 to 4.0×10−4 M, two 
linear regression equations Ip (μA) = 0.2524 + 
0.3922 c (μm), Ip (μA) = 4.7947 + 0.0369 c (μm) 
were obtained with the correlation coefficients 
of 0.9963 and 0.9943 consequently. 

 
Fig. 1. Scanning electron microscope of the PSA 
film. 
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Fig. 2. Electrochemical impedance spectra of 
bare GCE (a), PSA/GCE (b). 
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Fig. 3. DPVs of 1×10-4 M L-Trp in 0.1 M PBS (pH 
3.5) at the bare GCE (b), PSA/GCE(c) and the bare 
GCE in the absence of L-Trp (a). 
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Fig. 4. (A) DPVs of the PSA/GCE at different L-Trp concentrations from 5×10-8 M to 4×10-4 M. The above inset 
is the amplifying DPV of L-Trp from 5×10-8 M to 1×10-5 M. (B) the calibration curve for the determination of L-Trp. 
Insert: the plot of the peak current vs. L-Trp concentration 

The detection limit (S/N=3) and the sensitivity 
was calculated to be 6.8×10-9 M and 1913.63 
μA·mM−1·cm−2 respectively. 

To evaluate the influences of some potential 
interference on the determination of L-Trp, 
various foreign species were added into 0.1 M 
PBS containing L-Trp (1×10-6 M), such as 
cysteine, alanine, phenylalanine, glutamic. The 
results indicate the interference effects of the 
above analytes toward response of L-Trp are 
negligible when the concentration is more than 
100-times. Furthermore, there are some 
important biological substances like AA and DA 
often coexisting with L-Trp in biological samples. 
Fig.5 describes the DPVs of different 
concentrations of L-Trp at PSA/GCE in the 
presence of AA and DA. It can be seen that 
three well-separated peaks presented at the 
detached potentials, indicating that AA and DA 
had no interference for the detection of L-Trp. In 
addition, the peak currents of three compounds 
increased synchronously with the increasing of 
concentrations of L-Trp, AA and DA, implying 
that PSA/GCE can be also applied for the 
simultaneous determination of L-Trp, AA and 
DA. 

Table 1 displays analytical results of the 
proposed method and were compared with 
other electrochemical methods reported 
previously for detecting L-Trp. It can be seen 
that the electrochemical performance of 
PSA/GCE here is favorable and the 
electrochemical sensor would be very suitable 
for practical L-Trp detection. 

Conclusions 
A novel sensor of L-Trp was prepared with poly-
sulfosalicylic acid modified glassy carbon 
electrode by electropolymerization in this work. 
The modified electrode showed wide linear 

concentration range, low detection limit and 
high selectivity. In addition, the method can be 
applied for the measurement of L-Trp in the 
presence of AA and DA. The results showed 
that PSA/GCE had good analytical performance, 
which can be used for routine analysis of L-Trp 
in biological samples. 
Tab. 1: Comparisons of the proposed PSA/GCE 
performance with those previously reported 

Method Dynamic 
ranges(μM) 

Detection 
limits(μM)

4-ABA/GCE[11] 1–100 0.2 

PGA/CNTPE[12] 0.05–100 0.01 

4-FEPE/CPE[13] 0.85–63.4 0.56 

AuNP-
CNT/GCE[14] 

0.03–2.5 0.01 

Au-NPs/GCE[15] 0.09-500 0.08 

Present work 0.05-400 0.0068 
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Fig. 5. Differential pulse voltammograms of L-Trp 
(1-20 μM) in 0.1 M PBS (pH 3.5) in the presence of 
ascorbic acid (20-200 μM) and dopamine (1-20 μM). 
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