NASICON-based CO₂ sensor operative at room temperature with Li₂CO₃-based auxiliary as a sensing electrode Kenji OBATA^{*1, 2} and Shigenori MATSUSHIMA^{1, 2} ¹Department of Materials Science and Chemical Engineering, Kitakyushu National College of Technology (KCT), 5-20-1 Shii, Kokuraminami-ku, Kitakyushu 802-0985, Japan ²Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology (KIT), Kitakyushu Science and Research Park, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan * Corresponding author Tel: +81-93-964-7245 Fax: +81-93-964-7308 E-mail: obata@kct.ac.jp #### **Abstract** A Potentiometric NASICON (Na $_3$ Zr $_2$ Si $_2$ PO $_{12}$)-based CO $_2$ sensor operative at room temperature was fabricated by combining with a metal oxide (ITO: indium tin oxide) and Li $_2$ CO $_3$ -In $_2$ O $_3$ (4:1 in molar ratio) auxiliary as a sensing electrode, and its CO $_2$ sensing properties were examined under 30% RH (relative humidity) in the temperature range of 30 to 100 °C. When the Li $_2$ CO $_3$ -In $_2$ O $_3$ -attached sensor was operated in the range of 250 to 2500 ppm CO $_2$ at 30 °C, the EMF (electromotive force) change of the sensor was 30.4 mV. The EMF values were correlated linearly with the logarithm of CO $_2$ concentration. In addition, to evaluate the interfluence of coexisting NO $_2$, the Li2CO3-In2O3-attached sensor was measured under 30 %RH in the range of 2 to 7 ppmNO2 between 30 and 100 °C. As the result, it was found that the sensor attached with Li $_2$ CO $_3$ -In $_2$ O $_3$ auxiliary showed the high selectivity to CO $_2$ as compared with the sensor attached with Li $_2$ CO $_3$ -BaCO $_3$ (1:2 in molar ratio) auxiliary phase. **Key words:** NASICON, CO₂ sensor, ITO, Li₂CO₃, Operative at room temperature # Introduction NASICON (Na⁺ super ionic conductor: Na₃Zr₂Si₂PO₁₂)-based CO₂ sensor using solidstate electrolyte attached with an alkaline metal carbonate or binary carbonate auxiliary phase has been attracted a great deal of attention, because the sensor shows a high sensitivity and fast response [1]. However, the sensor must be operated at elevated above 350 °C to advance the electrochemical reaction. sensor combined with a heater consumes a large amount of electric power. On the other hand, the NASICON-based sensor attached with a metal oxide (ITO: indium tin oxide) and Li₂CO₃-BaCO₃ auxiliary phase show the good CO₂ sensing capability at room temperature [2]. If the heater can be eliminated from the sensor, the sensor can be much smaller and simpler, and operated easily with batteries. However, it was pointed out that this type of sensor is unstable by disturbance of NO₂ coexisting in the atmosphere [3]. Recently, it was reported that a CO₂ gas sensor using oxycarbonate-based auxiliary phase was not affected much by NO (0-600ppm) coexisting in the atmosphere [4]. In the present study, we investigated the effects of using Li₂CO₃-based auxiliary phase (Li₂CO₃-In₂O₃) for the NASICON-based CO₂ sensor operative at room temperature. # **Experimental method** NASICON powder as a solid-state electrolyte were prepared by a sol-gel technique using $Si(OC_2H_5)_4$, $Zr(OC_4H_9)_4$, $PO(OC_4H_9)_3$ NaOC₂H₅ [2]. After the precursor powder was compacted into a disk (9mm in diameter and 1.2 mm thick), the disk was sintered at 1200 °C in air for 5 h. The powder of ITO (10 mol% Sndoped In₂O₃) was prepared from a mixed solution of InCl₃ and SnCl₄, by a doping the calcination conditions of 1000 °C for 2 h. The Li₂CO₃-based auxilliary (Ll₂CO₃-ln₂O₃) was prepared from the mixutre of Li₂CO₃ and In₂O₃ (4:1 in molar ratio) and by calcining at 600 °C for 1 h. The binary carbonate (Li₂CO₃-BaCO₃) were prepared from the mixutre of Li₂CO₃ and BaCO₃ (1:2 in molar ratio) and by calcining at 750 °C for 10 min. The sensor was fabricated by combining the NASICON disk with ITO and an auxiliary phase (Li₂CO₃-In₂O₃ and Li₂CO₃-BaCO₃), as shown in Fig.1. The reference electrode was prepared by using Au paste, followed by calcination at 800 $^{\circ}$ C in air for 2 h. On top of it, the CO₂ sensing electrode was formed by applying ITO powder assisted with an auxiliary phase. Then, the whole assembly was calcined at 500 $^{\circ}$ C in air for 0.5 h. Fig. 1. Schematic drawing of CO₂ sensor. Gas sensing properties were measured in a conventional gas-flow apparatus equipped with a heating facility. Sample gases consisting of air, CO_2 , NO_2 and H_2O were prepared by diluting a parent gas (5000 ppm CO_2 or 10 ppm NO_2 in dry synthetic air) with wet and dry synthetic air. The concentration of CO_2 and NO_2 in the sample gases were varied in the range of 250 - 2500 ppm CO_2 and 2 - 7 ppm NO_2 under 30 % relative humidity (RH). The electromotive force (EMF) of the sensor was measured with a digital electrometer. #### Results and discussion Figure 2 shows the EMF response transients of the $\text{Li}_2\text{CO}_3\text{-In}_2\text{O}_3\text{-attached}$ sensor to stepwise changing CO_2 concentration under 30 %RH at 30 °C. When CO_2 concentration was increased in the range of 250 to 2500 ppm, the EMF was obtained 30.4 mV. The 90% response time of $\text{Li}_2\text{CO}_3\text{-In}_2\text{O}_3\text{-attached}$ sensor to stepwise changing CO_2 concentration from 250 to 2500 ppm was estimated to be about 10 min. Fig. 2: EMF response transients of the Li₂CO₃In₂O₃-attached sensor to stepwise changing CO₂ concentration under 30 % RH at 30 °C. Figure 3 shows the relationship between EMF values and CO_2 concentrations under 30 %RH at various temperatures for the Li_2CO_3 - In_2O_3 -attached sensor. The EMF values of the sensor were correlated linearly with the logarithm of CO_2 concentrations at the operation temperature between 30 and 100 °C. The theoretical EMF of the potentiometoric NASICON-based sensor is expressed by using the next Nernstian equation [1]: $$EMF = (RT/nF) \cdot ln(P''_{gas}/P'_{gas})$$ (1). Where n is the number of electrons associated with the electrode reaction of CO_2 (n= 2), P the partial pressure of target gases, R the gas constant, T the absolute temperature and F the Faraday constant, respectively. Applying to Nernstian equation (1), the n indicated 1.98 (30°C), 2.60 (60 °C) and 3.19 (100 °C), respectively. Fig. 3: Relationship between EMF values and CO₂ concentration under 30 % RH at various temperatures for the Li₂CO₃-In₂O₃-attached sensor. Fig. 4: CO₂ sensitivity under 30 %RH at 30, 60 and 100 °C for the sensors attached with various auxiliary phase: (a) Li₂CO₃-In₂O₃-attached sensor, (b) Li₂CO₃-BaCO₃-attached sensor and (c) theoretical values. Figure 4 shows CO_2 sensitivity of the Li_2CO_3 - In_2O_3 -attached sensor under 30 %RH at 30, 60 and 100 °C. Here ΔEMF_{CO2} stands for the increments in EMF on increasing the CO_2 concentration from 250 to 2500 ppm. The CO_2 sensitivity of the Li_2CO_3 - In_2O_3 -attached sensor was a slightly low at higher temperature as compared with the Li_2CO_3 -Ba CO_3 -attached sensor. Subsequently, it was investigated on the influence of NO_2 coexisting in the atmosphere for the Li_2CO_3 - In_2O_3 -attached sensor. Figure 5 shows the cross-sensitivity to NO_2 in the range of 2 to 7 ppm NO_2 under 30 %RH at 30 °C. As shown in Fig. 5, the sensor was not fluctuated by the change in NO_2 concentration in the range of 2 to 7 ppm NO_2 . Fig. 5: Cross-sensitivity to NO₂ under 30 %RH at 30 °C for the Li₂CO₃-In₂O₃-attached sensor. Fig. 6: Comparison of cross-sensitivity to NO₂ under 30 % RH at various temperatures for the sensors attached with (a) Li₂CO₃-In₂O₃ and (b) Li₂CO₃-BaCO₃ as an auxiliary phase. Figure 6 compares a cross sensitivity to NO_2 of the CO_2 sensors attached with (a) Li_2CO_3 - In_2O_3 and (b) Li_2CO_3 -Ba CO_3 as an auxiliary phase under 30 % RH at various temperatures. Here ΔEMF_{NO2} stands for the increments in EMF on increasing the NO_2 concentration from 2 to 7 ppm. As shown in Fig. 6, although the Li_2CO_3 -Ba CO_3 -attached sensor was disturbed by the NO_2 concentration change, the Li_2CO_3 - In_2O_3 -attached sensor did not affect the CO_2 detection for the change in NO_2 concentration at the operation temperature between 30 and 100 °C. Table 1: CO₂ sensitivities and NO₂ crosssensitivities of the Li₂CO₃-In₂O₃- and Li₂CO₃-BaCO₃-attached sensors under 30 %RH at 30 °C. | Gas | Theoretical
value / mV | Auxiliary phase | ΔEMF/ mV | |-----------------|---------------------------|---|----------| | CO ₂ | 30.1 | Li ₂ CO ₃ -BaCO ₃ | 30.2 | | | | Li ₂ CO ₃ -In ₂ O ₃ | 30.4 | | NO ₂ | - | Li ₂ CO ₃ -BaCO ₃ | 29.0 | | | | Li ₂ CO ₃ -In ₂ O ₃ | 3.7 | Table 1 compares $\Delta \text{EMF}_{\text{CO2}}$ and $\Delta \text{EMF}_{\text{NO2}}$ of the sensor attached with the $\text{Li}_2\text{CO}_3\text{-In}_2\text{O}_3$ and $\text{Li}_2\text{CO}_3\text{-BaCO}_3$ as an auxiliary phase to the increase in CO_2 or NO_2 concentration. As shown in Table 1, although $\text{Li}_2\text{CO}_3\text{-BaCO}_3\text{-attached sensor was largely fluctuated by the NO<math>_2$ concentration change, $\text{Li}_2\text{CO}_3\text{-In}_2\text{O}_3\text{-attached sensor has a high selectivity to CO}_2$ gas. ### **Acknowledgements** This work was partially supported by a Japan Science and Technology Agency (No. AS232Z00263B) and a Grant for Promotion Kitakyushu National College of Technology Research Projects. ## References - [1] N. Yamazoe and N. Miura, *Solid State Ionics*, **86–88** (1996) 987-993. - [2] K. Obata, S. Kumazawa, S. Matsushima, K. Shimanoe and N. Yamazoe, Sensors & Actuators B, 108 (2005) 352 358. - [3] K. Obata, S. Motohi, S. Matsushima, Sensors and Materials, **24** (2012) 43-56. - [4] N. Imanaka, M. Kamikawa and G. Adachi, *Analytical Chemistry*, **74** (2002) 4800-4804.