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Abstract  
We propose the use of multi-way methods to analyze the contribution of diversity and redundancy to 
odor identification and concentration estimation in a large chemical sensor array. We use a chemical 
sensing system based on a large array of metal oxide sensors (MOX) and inspired on the diversity 
and redundancy of the olfactory epithelium. In order to analyze the role of diversity (different sensor 
type and temperature modulation) and redundancy (replicates of sensors and different load resistors) 
in odor quantification and discrimination tasks, we have acquired two datasets and modeled the data 
using multi-way techniques. 
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Introduction 
The olfactory epithelium is populated by millions 
of olfactory receptors neurons (ORNs) that bind 
to a number of odor molecules. When exposed 
to a variety of odorants, ORNs of different type 
show differences in their activation patterns [1], 
so that sensory diversity encodes the odor 
quality. When exposed to a single odorant, 
ORNs of the same family present an almost 
continuous variation of their dose-response 
curves [2], thus sensory redundancy allows the 
encoding of odor quantity.  

Methods 
Taking inspiration from the ORN population in 
the olfactory epithelium, we have built a large 
MOX sensor array that combines sensor 
diversity by means of 10 different sensor 
families modulated in temperature [3], and 
sensor redundancy with sensor replicates and 
different load resistors. A total of 96 MOX 
Figaro and FIS commercial sensors placed in 8 
identical and independent compartments plus 
one temperature and one humidity sensor per 
compartment. A module with two high-speed 
multiplexors (NI PXI 2530) allows switching the 
connection of the sensors to 16 load resistors 
(100Ω - 100KΩ) to measure the sensor output. 

 Using this system, we have collected two 
datasets. Dataset I was designed to test the 
system in odor discrimination tasks, and 
consisted in the binary mixtures of 3 odorants  

 

ethanol, acetone, butanone). The experiments 
were designed to have a transition from a first 
analyte to a second analyte by decreasing the 
concentration of the first analyte and increasing 
the concentration of the second in six steps. 
This procedure is repeated for the 3 binary 
combinations of the 3 analytes for a total of 18 
experiments (Table I). Dataset II was devised 
for odor quantification purposes, and comprised 
7 different concentrations of ethanol (0,20 
40,60,80,100 and 120 ppm). The experiments 
were randomized for the collection. The 
complete set of experiments was repeated 7 
times for dataset I and 9 for dataset II.  

 

 
Table. 1: Table of experiments of dataset I. Three 
binary mixtures from ethanol, acetone and butanone 
with 6 different concentration ratios each. 
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Results  

The datasets are analyzed using parafac, a 
multiway method that allows separating the 
contributions in odor identification and 
concentration estimations of each of the modes 
used. In our study the modes used are sensor 
type, temperature, load resistor, and samples. 
Figure 1 shows the sample scores and the 
corresponding loadings for temperature, 
resistor and sensor variables of the parafac 
model built with a single repetition of the 6 
mixtures of ethanol and acetone in dataset I, for 
8 temperature modulated sensors with all 16 
load resistors.  
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Fig. 1: Plots of sample scores and loadings for the 1 
component Parafac model corresponding to 6 binary 
mixtures of ethanol and acetone (dataset I). Sample 
scores show a clear linear tendency. Important 
loading contributions can be found at medium 
temperatures, high resistances and sensor families 2 
a 7 (TGS-2600, TGS 2630).. 

Figure 2 shows the predicted concentration of 
ethanol and the mean square error in prediction 
for a NPLS built using the 8th first repetitions of 
dataset II for calibration and the last one as 
validation subset, using the complete set of 
variables.  
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Fig.  2: Plot of predicted vs fitted scores of the 4 
latent latent variable npls model corresponding to 7 
ethanol concetrations (dataset II). 

Conclusions 

We presented an analysis of sensory diversity 
and redundancy for a large MOX sensor array. 
We showed that multi-way techniques simplify 
data interpretation since they separate the 
loadings for each mode, also reducing 
significantly their number. 
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