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Abstract

Multi-Component Force-/Torque Transducers are used in applications where the direction of the force- and torque vec-
tors as well as their magnitude are unknown and time-dependent such as robotics, flow measurement or nondestructive
testing. In contrast to the measurement task the calibration of those Sensors is only done statically in most cases. When
the measurands are getting closer to the sensors resonance frequency, the usage of static calibration factors leads to de-
viations in the measurement. A dynamic calibration can be used to identify the frequency responses of the sensor and is
the basis for designing an appropriate filter that compensates these deviations. In this paper the dynamic properties of a
multi-component force-/torque transducer are investigated using a calibration system based on a voice-coil actuator
which allows the application of force with different waveforms. The results of the measurements are compared with re-

sults of FEM calculations and results of a static calibration and a compensation filter is designed.

1 Introduction

Strain gauge based force transducers are often used in ap-
plications that require the measurement of static or quasi-
static forces. These measurements can be done using re-
sults of static calibration . In dynamic measurements, de-
viations caused by the use of static calibration coefficients
increases when approaching the resonance frequency of
the sensor. This paper deals with the dynamic force cali-
bration of a multi-component force-/torque sensor de-
signed for the application in Lorentz force velocimetry
[1]. For the dynamic calibration a system is used that al-
lows the use of various test signals to determine the sys-
tem parameters of the force transducer [2]. Measurement
results for the calibration of three force components are
shown. Based on the estimated parameters, an inverse fil-
ter [3] is designed to calculate the dynamic input force
from the measured output voltages of the sensor.

2 Measurement Setup

To perform a dynamic measurement of the multi-
component measurement system, forces with fre-
quencies of up to 1000 Hz were applied using a voice-
coil actuator. For a complete characterization of the
force components of the sensor, at least three inde-
pendent measurements are required, with the actua-
tor being aligned with each one of the three measure-
ment axes. The force sensor is mounted in a fixed posi-
tion while the voice-coil actuator is mounted in three
different orientations on the force feed-in as can be
seen from Figure 1. During every measurement the
responses of all measurement axes are captured which
allows the determination of the main responses and
the crosstalk to other components.
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Figure 1: Force calibration of z-axis with voice-coil
actuator

The actuator generates a Lorentz force proportional to the
current, applied by a U/I-converter which translates the
test signals created by a dSPACE digital signal processing
unit [4]. The current through the coil is measured to cal-
culate the acting force from the calibration constant of the
actuator. The U/I converter has a constant transfer behav-
ior of 101 mA/V up to a frequency of 10 kHz. Additional
to creating the test signals and measuring the coil current,
the dSPACE unit is used for simultaneous sampling of the
output signals of the six channels of the force sensor. The
dSPACE unit is controlled by a computer, which is re-
sponsible for processing the measured data and receiving
the measuring parameters, such as the measuring time and
type of test signal from the user.
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3  System Identification

3.1 Signal Processing

To determine the transfer function the Fourier Trans-
form is applied to the system’s input signal u(t) and
output signal y(t) giving

Flu®)} =U(w); Fly®)}=Y(w)
Under the assumption that the system is linear, its fre-

quency response can be determined as [5]:
6(w) = 102
U(jw)
By the FFT, we obtain a discrete estimate for the sys-
tem’s frequency response:
GGwy) = Z(J.wl)
R ~ U(w;)
where Y (jw;) and U(jw;) are respectively the FFT of
the systems input and output signal and i€ {x €
N*:x < k}, with k € N* equal to the domain size of the
discrete frequency response function. The systems
gain K(w;) and phase shift ¢(w;) are calculated
through the following expressions:
K(w) =|GGw)];  @(w) = arg(G(w,)
The input signal u(t) should contain every frequency
component that is relevant for the analysis. Here we
use the Maximum length binary sequence (MLBS) and
the Chirp-Signal.
The chirp signal (Figure 2) consists of a sine function
with time-dependent frequency. This signal is given by
the following function:

u(t) = sin <2ﬂ (flz;f 0¢2 4 fot))

1
where f; and f; are the initial and final frequency. On
mechanical systems with resonance, the chirp signal
must be carefully applied in order to avoid excessive
excitation of the system at its resonance frequency.
1 -
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Figure 2: Chirp signal

The MLBS signal (Figure 3, [6]) is a pseudo random,
time-discrete, binary signal. Like the pseudo-random
white noise, this signal is capable to excite different
frequency components simultaneously.
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Figure 3: Maximum length binary sequence (MLBS)

3.2 Frequency response of the amplifier

As the output signals of the transducer are in the range
of some mV, the frequency response of the sensor
cannot be measured accurately without amplification.
Therefore a six-channel analog preamplifier based on
Linear Technology LT1167 instrumentation amplifiers
and a constant voltage bridge supply is set up and
needs to be identified separately from the force sensor
to determine its influence on the measured response.
This measurement is done by using a dummy Wheat-
stone bridge circuit with the Chirp-signal described
above as excitation-signal for the bridge.
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Figure 4: Frequency response of the amplifier (blue) with
standard deviation over 20 measurements (red)

The amplifier was set to gain of 61 dB and reaches a
corner frequency of 9 kHz, which corresponds approx-
imately to the datasheet value of 12 kHz given for a
gain of 1000. The frequency-dependent change of gain
and phase of the amplifier is negligible in the frequen-
cy range where the sensor is identified. Therefore the
amplifier can be considered by a constant factor in the
measured transfer function of the sensor.
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3.3 Parametric Identification

All axes of the sensor were measured using the chirp
signal. For system identification, the mean values of 20
measurements were used. These results are very simi-
lar to the frequency response of the second order
transfer function

Kw3

G(s) = )
) s2 + 28wys + w?
with K,w, € R" and € € {x € R: 0 < x < 1}. Through
the parametric optimization of the error function

e(K, w, ) = f 16 G0)] = Gy (@))? do,

the transfer function G(s) can be fitted to the meas-
ured frequency response data Gy (w), and the parame-
ters K, w, and ¢ can be determined. This was done for
all axes of the multicomponent sensor with w; = 10
Hz and w, = 200 Hz. The result of the identification
process is shown for the z-axis in Figure 5.
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Figure 5: Measured Frequency response of the sensors z-
axis (blue) and frequency response of identified model
(red)

Characteristics of the measured signal like disturb-
ances at about 50 Hz, caused by the alternating-
current electric power supply or coupling between the
axes at resonance frequencies (at approx. 45, 120 Hz)
are not considered by the transfer function G(s). For
every axis a transfer function model was fitted. The
identified parameters including their uncertainties ob-
tained from the fitting procedure are shown in Table
1.

Table 1: Results of the parametric identification

Axis X Y Z
K 4.0905e-04 | 2.9794e-04 | 4.6903e-04
u(K) 7.4766e-07 1.6344e-06 7.0869e-07
w, (Hz) 84.9673 64.6189 81.8081
u(w,) (Hz) 0.8447 0.8181 0.7782
0.0266 0.0271 0.0238
u(®) 6.9215e-05 1.6664e-04 | 5.7882e-05
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4 Simulation

To calculate the frequency response of the sensor, a
harmonic analysis in ANSYS Workbench was done.
The simulation provides information about the mode
shapes of the oscillation as shown in Figure 6.

Figure 6: Mode shapes of the sensor when excited by a
force in y-direction

The local strain at the application areas of the strain
gauges can be calculated as well. The frequency re-
sponse was determined firstly for every single strain
gauge. Four strain gauge responses were combined to
obtain the output response of a measurement bridge.
The bridge signals were used to calculate the output
signal of the sensor which is shown in Figure 7.
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Figure 7: Comparison of simulation results and
measurement for frequency response of y-axis.
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The simulation shows a good agreement with the
measurement to a frequency of about 100 Hz. Due to
the inaccuracy of modeling of the mass and mass dis-
tribution of the voice-coil and the lever, the resonance
frequency and the disturbances deviate from the
measurement result.

S Filter Design

As shown above, the sensor has a frequency depend-
ent sensitivity which leads to measurement errors if a
static calibration is applied to dynamic measurements.
Based on the model of the measurement axes, a filter
can be designed to obtain the correct input signal by
deconvolution of the output signal with the inverse
model of the measurement system [7]. Until their first
resonance frequency the measuring axes dont have
many disturbances or crosstalk and can be modeled by
a second order transfer function. To determine the
discrete filter from the identified transfer functions
they are discretized using the bilinear transformation
2z—-1

STTz+1

The discrete transfer function is given by

Ga(2) = Ge(s)| _22-1
T z+1
A digital filter can be expressed in the following form

B(z) by+biz7l+byz7?2+ -+ byz VN
A(z2)  14+azt4az2+-+ayz™
By comparison of the coefficients of the discrete trans-
fer function G;(z) with H(z) the filter coefficients can
be determined. The inverse filter coefficients are given
by H™1(z). To get a stable FIR-filter the denominator is
set to a constant value given by the sum of all denomi-
nator coefficients. Through the filtering a flat frequen-
cy response is achieved and signals at high frequencies
are strongly amplified. To reduce noise on the filter
output and reduce the influence of higher resonances,
another lowpass filter is needed to attenuate the sig-
nal at frequencies above the desired measurement
bandwidth.
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Figure 8: Sensor and filter responses for z-axis. The
amplitude responses are normalized to a gain of 0 dB.
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Figure 9 shows the sensor response to an input signal,
the response of the inverse filter with and without the
additional lowpass filter together in time-domain.
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Figure 9: Input signal (top) and corresponding sensor

output (bottom) with static (green) and dynamic

calibration (blue, red)

6 Conclusion

In this paper, the force measuring axes of a multi-
component force-/torque sensor is calibrated dynami-
cally by using a voice-coil actuator. From the frequen-
cy responses the parameters of a second-order trans-
fer function model for every axis are identified. Then
the results of a FEM-simulation are compared to
measurement results. An inverse filter is designed in
order to decrease the measurement error at operating
frequencies close to resonance.
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