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Abstract

We present an Inverse Method for determining material parameters of piezoceramics as well as passive
materials (e.g., metals, glasses, plastics, composites). The Inverse Method is based on the minimization
of the deviation between measurements and simulation results by an optimization algorithm. In doing
so, material parameters are identified via an iterative adjustment of the simulation parameters. Contrary
to common characterization methods, the Inverse Method is qualified to identify all material parameters
of piezoceramics (i.e., tensors of elasticity, permittivity and piezoelectric coupling) through measured
electrical impedances of only two test samples. Furthermore, the Inverse Method is applied for
determining frequency dependent material parameters (e.g., tensor of elasticity, damping factor) of
passive materials by forced vibration testing. We show results for a characterized piezoelectric material

and a passive material.
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1 Introduction

The availability of precise material parameters
is essential for FEM-based (finite element
method) numerical simulations. Consequently,
the determination of material parameters is of
major importance. Previous publications have
shown suitable procedures to characterize
material  parameters of  piezoceramics
[1, 2, 5, 7] and passive materials [4, 8]. In this
contribution two adapted approaches are
illustrated which provide material parameters of
piezoceramics and passive materials by means
of the Inverse Method. Section 2 addresses the
fundamentals of the Inverse Method. Section 3
deals with the basics of piezoceramics, the
used measurement setup and results of the
characterized piezoelectric material SONOX®
P5.

The determination of frequency dependent
material parameters of passive materials by an
adapted Inverse Method, developed as part of
a doctoral thesis [6], is illustrated in section 4. At
this, a phenomenological approach is
introduced, which is applied to determine the
frequency dependent behavior. Finally, the
frequency dependence of PVC is shown.

2 Fundamentals of the Inverse Method

The Inverse Method is a suitable tool for solving
ill-posed problems with a known effect (i.e.,
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measurement results, boundary conditions and
excitation) but unknown cause (i.e., material
parameters). Unlike direct problems, which
mostly enable a solution by calculation, the
Inverse Method finds the solution stepwise by
means of appropriate regularization methods.

Figure 1 shows a flowchart of the Inverse
Method. In order to identify all desired material
parameters, measurements and simulations of
selected physical quantities of the specimen are
required. We conduct numerical simulations in
the finite element tool CFS++ (Coupled Field
Simulation). An initial material parameter set (4)
is required to run the first simulations (i.e.,
manufacturer data). After each simulation, the
deviation  between  measurements and
simulations is determined (6). In addition,
adjusted material parameters are calculated
through a regularization algorithm (e.g.,
Levenberg-Marquardt, Gaufl3-Newton).

Afterwards, the next simulation with an adapted
parameter set is started. This procedure
continues until an abort criteria (8) is fulfilled.
That means the deviation between
measurement and simulation results become
very small and all parameters converge towards
a certain value. Sensitivity studies ensure that
the Inverse Method finds the global minimum.
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Fig. 1: Flowchart of the Inverse Method.

3 Identification of material parameters for
piezoceramics

The piezoelectric characteristic of materials is
defined by the piezoelectric equations

D = eS + £5E 1)
T = cfS — e'E, @)
which describe the relationship between
mechanical and electrical behavior (5: dielectric

displacement, E: electric field, S$: mechanical

strain, T: mechanical stress). An elasticity
tensor, a permittivity tensor and a tensor of
piezoelectric coupling is required. For class
6mm materials, these tensors are defined as [3]
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The tensors contain ten independent material
parameters. Additionally, a loss factor a is
required to consider damping. To achieve
reliable finite element based simulation results,
all eleven parameters are required.

3.1 Measurements

Contrary to common  characterization
methods [3], the Inverse Method is qualified to
identify all material parameters of
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piezoceramics through measured electrical
impedances of only two test samples. Those
specimens only differ in their polarization
direction: a thickness mode sample (T1),
polarized in thickness direction, and a thickness
shear mode sample (T2), polarized in width

direction. The impedance around three
characteristic  resonance frequencies of
sample T1 (T1-L, T1-W, T1-T) and one

resonance frequency of sample T2 is measured
by an impedance analyzer (HP 4192A).
Thereby, two spring pins connect the samples
(see Fig. 2). The measurements are realized
inside an environmental chamber to additionally
determine temperature dependence of the
material parameters [5].

impedance analyzer piezoceramic
(HP 4192A) |

spring pin

environmental
chamber

Fig. 2: Impedance measurement setup.

3.2 Simulations

Similar to the measurements, we simulate
electrical impedances around all four resonance
frequencies. In doing so, three different
simulation models are utilized: a 3D model for
transverse length modes T1-L and T1-W, a 2D
model for thickness extensional mode T1-T and
a 2D model with a rotated polarization direction
for the thickness shear mode T2 [1]. Note that
the simplification of the 3D models to 2D models
is more efficient due to the many elements
required for higher frequency simulations.

3.3 Results

The frequency resolved electrical impedance of
the simulations with the identified parameter set
coincides well with the measurements (see Fig.
3). Table 1 shows average values and
deviations of identified parameters for the
piezoelectric material Sonox® P5 (CeramTec)
at 20 °C. For this, five samples of type T1 and
five samples of type T2 were measured at
identical conditions. Thus, 25 Inverse Methods
were executed to generate statistical
information.
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Fig. 3: Electrical impedance at resonance frequencies of thickness (T1) and shear (T2) mode sample.
Measurement (solid line), simulation with initial guess parameter (dotted), simulation with identified parameter

set (dashed).
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Tab. 1: Identified parameters of CeramTec Sonox® P5 at 20 °C; c};’y in N/m?; s,fy in F/m; ey, in C/m?. Average
values and standard deviations on basis of 25 identification results.

Parameters
i1 ct s s Ca &1 53§3 €31 €33 €15 a
Average 122.4-10° | 76.2-10° | 76.5-10° | 110.9-10° | 19.1-10° | 7.8:10° 6.4-10° 5.5 15.1 12.2 | 0.012
Standard
deviation 0.3 0.4 0.4 0.5 0.4 0.5 2.5 14 1.3 0.4 2.3
in %

the elasticity tensor. For isotropic materials, the

4 ldentification of frequency dependent elasticity tensor

parameters of passive materials

Constant material parameters of passive o
materials often lead to imprecise numerical : 5
simulation results. In contrast, frequency 1
dependent material parameters can be applied E
to simulate viscoelastic behavior, especially

important for plastics. To take frequency c=
dependent behavior into account, we use a
phenomenological approach [6]. Despite Yy
several advantages, the implementation of
fractional derivatives [9] is not yet expedient for M
our applications due to a higher complexity and

the need of an additional measurement at high G
frequencies [6].
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possesses two independent material
The mechanical behavior of a sample is parameters: the elasticity modulus £ and the
described by the Hooke’s law, which contains
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Poisson’s ratio v. Furthermore, a damping
factor ¢ is defined.

The phenomenological approach to consider
viscoelasticity consists of a static, a linear and a
logarithmic term (see Eq. 8). The Poisson’s ratio
is assumed as constant. The frequency
dependence of the damping factor results from
the elasticity modulus through the Kramers-
Kronig relationship (see Eq. 9-12) [6, 9, 10]. The
precondition for this are causal functions of
elasticity modulus and damping factor. Causal
means that the response of a system is only
influenced by previous or current events. llg [6]
shows a detailed consideration on causality of
the applied approach. Parameter b is added to
Eq. 12 through the underlying approximation

(Eq. 9) [6].
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Note that this approach is only partially
applicable for transient simulations because
causality is just ensured for frequencies
surrounding the measurement frequency range
(5 Hz — 10 kHz) [6].

§MO=b (12)

4

4.1 Measurements

The Vibration Transmission Analyzer (VTA)
determines a frequency dependent transfer
function

_ [
i = [ (13)

of an oscillating specimen (see Fig. 4). The
sample is stimulated harmonically by an
electromechanical shaker in a frequency range
of 5 Hz to 10 kHz. In doing so, the velocity near
clamping and free running end of the specimen
is measured by means of laser Doppler
vibrometers [4, 6].

Additionally, the influence of temperature on the
frequency dependent material parameters is
identified via placing specimen inside an
environmental chamber (3 =-40 °C to +140 °C).
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laser Doppler interferometer

clamping

shaker specimen

Fig. 4: Principle to acquire velocity transfer function
by the Vibration Transmission Analyzer (VTA).

4.2 Simulations

Similar to the characterization of piezoceramics
by the Inverse Method, numerical simulations
are required, which are also realized with
CFS++. However, we utilize anisotropic 3D
pFEM (higher order hierarchic finite elements)
ansatz functions to simulate thin specimens in
an efficient way [6].

4.3 Enhanced Inverse Method

The material characterization of passive
materials is performed in three substeps. This
enables the Inverse Method to identify precise
parameter values with lower requirements for
the initial guess parameters. Firstly, an
approximated elasticity modulus is found by
eigenfrequency analysis and extrapolation for
the first five resonance frequencies.
Subsequently, the elasticity modulus and
damping is determined around the first five
resonance frequencies by means of harmonic
simulations. Finally, the above-mentioned
frequency dependent elasticity modulus,
damping factor (see Eq. 8 and 12) and a
constant Poisson’s ratio are identified over the
whole frequency range [4, 6].

4.4 Results

Figure 5 illustrates the frequency dependent
material parameters elasticity modulus E(f)
and damping factor ¢(f) of PVC. The frequency
range is limited to 4 kHz since multidimensional
clamping vibrations can influence higher
frequency measurements (dependent on
material). The simulation result with identified
parameters is improved significantly as
compared to simulations with  static
manufacturer data. At this point, it should be
noted that frequency dependent parameters
can be applied to predict the real behavior also
for higher frequencies satisfactorily.
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Fig. 5: Results of characterized PVC specimen. Top:
Transfer functions (— measurement, -- simulation
result with identified parameters, --- simulation with
manufacturer data). Bottom: Frequency dependent
elasticity modulus E and damping factor ¢ versus
frequency (-- manufacturer data) [6].
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4.5 Error estimation

Three different Inverse Methods are performed
to estimate the maximal error caused by
measurement conditions. Table 2 shows the
specifications of the utilized FE models. The
estimated worst-case parameter deviations
yield amplitude changes and resonance shifts
to higher or lower frequencies. Figure 6
illustrates the tolerance range estimation of an
exemplary PTFE sample (/ 149.99 mm,
b =39.99 mm, h =4.03 mm).

Tab. 2: Specification of error estimation [6].

Case 1 Case 2 Case3
Length i /+0.2 mm /[-0.2 mm
Width b b-0.2mm b+ 0.2 mm
Thickness h h-0.05mm h+0.05 mm
Clamping length k k-0.1mm k+0.1mm
Meas. point (x) my my—1mm my+ 1 mm
Meas. point (y) my my—1 mm my+1 mm
Mass 52.65g 52.66 g 52.64 g

Fig. 6: Tolerance range of exemplary PTFE specimen. Top: Elasticity modulus E and damping factor &. Middle:
Error estimation of E and €. Bottom: resulting transfer function [6].
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5 Conclusion and Outlook

The Inverse Method is a suitable tool for various
ill-posed problems in material characterization.
The presented approaches enable a precise
identification for material parameters of
piezoelectric and passive materials. The
characterization of piezoceramics features a
good repeatability and a precise parameter
determination despite a reduction to only two
samples contrary to common standardizations.
Moreover, the behavior of frequency dependent
material parameters can be described by a
phenomenological approach. The identified
parameters of piezoceramics and passive
materials allow precise simulations also for
smart composites consisting of a passive
material and integrated piezoceramics [6, 8].
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Fig. 7: Comparison between phenomenological
approach and Zener model [9] for a PMMA
specimen. Top: measurement and simulations of
both concepts. Bottom: progression of elasticity
modulus and damping factor versus frequency.
Vertical dotted lines illustrate frequency range of
measurement.

Additionally, new measurement setups for
characterization of passive materials are
developed to raise the upper frequency limit.
The implementation of a fractional derivative
model is a basic content of further work to obtain
causality in general. Figure 7 shows a
comparison between the used
phenomenological concept and a four
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parameter fractional derivative approach based
on the Zener model [9].
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