DOI 10.5162/sensor2015/A3.3

Waveguide characteristics of elastic pipes
filled with multiphase fluids

Dipl.-Ing. Sebastian Wéckel, Dipl.-Ing. Hendrik Arndt, Dr.-Ing. Ulrike Steinmann, Prof. Dr. J6rg Auge
Institut fr Automation und Kommunikation (ifak) e.V. Magdeburg, Department Measurement Techno-
logy and Power Electronics, Werner-Heisenberg-Str. 1, 39106 Magdeburg, Germany
sebastian.woeckel@ifak.eu

Abstract:

This paper addresses the multimodal acoustic wave propagation in elastic pipes which can carry mul-
tiphase fluids. The waveguide characteristics of circular, fluid filled pipes and the influence of elasticity
of the outer boundaries (pipe wall) in relation to the compressibility of the filling liquid and the inner
boundaries due to an additional fluid phase are discussed — in comparison to the assumption of rigid
walls. The presented studies base on simulations which combine the fluid pressure acoustics and the
solid structure mechanics of a circular pipe which is filled with up to two fluid phases.
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Motivation

The industrial process monitoring with acoustic
waves is a common and interesting technique
especially when a non-invasive clamp-on con-
figuration can be realised, because of its non-
destructive nature and easy handling. Often the
vessels where the acoustic measurement is
applied are of limited volume and have restrict-
ed boundaries. General bulk wave acoustics do
not comply here. The tasks in process industry
are technologies to monitor filling level, flow,
concentration, density, particle content or distri-
bution of multiphase media.

Since the acoustic sensor is mounted on the
outer surface (e.g. pipe wall), reflections and
acoustic mode conversions may occur. The
vessel acts as a complex waveguide depending
on the measurement frequency, the particular
filling medium and its geometry [1], [2], [3]. The
outcome of this is a dispersive axial wave ve-
locity along the pipe wall (structure-borne
waves) and even within the fluid. Since the
waveguide behaviour is unknown, the depend-
ency of the velocity on frequency (dispersion)
and geometry will lead to uncertainty of the
correlation of the pressure amplitude and the
round trip time to changes in flow speed or var-
iations of the properties of the bulk material,
e.g. due to temperature. Further, the different
coexisting dispersive high-order wave modes
will cause a complex signal, whose shape and
characteristics change with propagation dis-
tance.
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Since a pipe is a closed system no free wave
can be assumed. According to several authors
the propagation of an acoustic wave within a
simple cylindrical pipe depends on the mechan-
ical impedance or elasticity of the boundary
(pipe wall) for “low” frequencies [4], [5]. For
“higher” frequencies the pipe acts as a wave-
guide and additional wave modes will occur
depending on the geometry [6], [7], [8]. In par-
ticular the decrease of the sound velocity due to
the elastic properties of the pipe wall was first
postulated by [9] and later verified amongst
others by [10]. The labels “low” and “high” are
related to the acoustic cut off frequency f; (first
radial frequency) of the guided waves.

Dispersion-Model of a fluid filled pipe
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Fig. 1. Waveguide-model of fluid-filled cylindrical pipe
segment with r — radial component, z — axial compo-
nent, K — compressibility, E — elasticity and u - pois-
sons ratio.

To consider the axial wave propagation inside a
fluid filled pipe a simple model with axial sym-
metry in cylindrical coordinates and infinite pe-
riodical dimensions in in z-direction is used (Fig.
1). Due to this symmetry only longitudinal wave
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modes are discussed. The flexural and torsional
modes are excluded by the solution. According
to this simplification the pipe forms a waveguide
where - besides the dominant mode - higher
order wave modes may occur depending on the
ratio of frequency (wavelength) to geometric
dimension (r/A1). Normally those modes are
dispersive and their propagation velocities de-
pend on the frequency.

In general the wave propagation can be de-
scribed with a wave equation. Equation (1) rep-
resents the wave equation for the displacement
u of a wave travelling along the pipe:

ulr, 8, z,t) = [Asin(ke6) + Bsin(kgd)] J, (k, r)eilkes—awt)
;CE = kz - kﬁ (1)
w=1k-c,

Herein A and B are constants, k the wave-
numbers for each coordinate and J, the Bessel-
function. For each layer of the pipe the ampli-
tudes A and B of the partial waves must be
solved for every coordinate (r, ®, z). So, six
equations need to be solved for each layer re-
specting the boundary conditions between the
layers [7], [11].

Typically, the partial differential equations have
to be solved numerically [7]. In the current work
the following software tools were used:

- Lamb Toolbox for Matlab [12],
- GUIGUW (Matlab) [13] and

- Comsol Multiphysics.

The solutions of the wave equations are three
different wave modes: Longitudinal-, Torsion-
al- and Flexural- modes with an unlimited
number of single modes with different cut-off
frequencies, phase velocities c,, and damping.
Longitudinal waves have a dominant displace-
ment in radial (r) and axial (z) direction (see Fig.
1). In contrast torsional waves only have a dis-
placement in @-direction. Both modes are ax-
isymmetric, which means that the displacement
on a certain distance to the pipes center is con-
stant along the circumference. The flexural
modes have no axial symmetry and a negligible
displacement in this direction. In the current
work the different modes are discriminated and
classified with the index (n, m) [14]. The circum-
ferential index n = 0 classifies modes with axial
symmetry and higher modes n = 1, 2, 3, ...
represent non-symmetric fields:
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Mode classification

(n )

m
radial’ chordal

a) Longitudinal — axial symmetry

L(omm=1,2,3, ..
Uz, Ug# 0, Ug =0

b) Torsional — axial symmetry

T(om)m=1,2,3, ..
Uz, Up=0, Ug 20

c) Flexural — no axial symmetry

F(nm)n=1,2,3,..m=1,2,3, ..

Uz, Ur, Ug 20
The index m discriminates ascending modes of
one class. The variable U, labels the effective
displacement for each coordinate.
All guided L-, T- and F- waves’ phase and
group velocities depend on frequency. Normally
this dependency is depicted within a dispersion
diagram.

Model of Superposition: To comprehend the
dispersive characteristics of complex systems
their dispersion diagram can be approximated
by the superposition of simplified geometries
(Fig. 2). The wave propagation in cylindrical
multiphase systems is such a superposition of
homogeneous single components (like cylinder)
with isotropic materials. As a result the fluid
filled pipe can be dismantled in an empty pipe
with free boundaries and a water column with
rigid boundaries.

The modes (dispersion curves) of the single
components either can be asymptotes or direct
modes of the complex system. Besides, a mode
jumping will occur at mode crossing points.
Concerning the boundaries the cases free, rigid
and elastic have to be distinguished. Hereby,
every filling of the pipe defines the mechanical
load at the inner boundary of the pipe wall,
which will lead to a clear change of the disper-
sions characteristics of the guided wave modes
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Fig. 2. Scheme for superposition of a fluid-filled cy-
lindrical pipe.
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Results

Dispersion diagram of an empty cylindrical
pipe with free boundaries: For an ideal pipe
surrounded by vacuum (Fig. 3) or a fluid with
low mechanical loading three fundamental dom-
inant acoustic modes exist [L(0,1), F(1,1),
T(0,1)] below the first cut-off frequency (first
radial frequency, fy = 5 kHz for a plastic pipe
corresponding to Fig. 3 and 5 [7]. Their cut-off
frequencies depend on material and size of the
pipe.
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Fig. 3. Longitudinal (black), Torsional (green) and
Flexural modes (dashed red) of an empty plastic pipe
(E =5.787 GPa, u = 0.3, p= 1380 kg/m? d; = 99 mm,
ds = 110 mm) — calculated with GUIGUW
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Dispersion diagram of a liquid filled pipe: In
the lower frequency range the filling of a pipe
leads to a clear change of the longitudinal
modes (Fig. 4). The former L(0,2)-mode (refer
Fig. 3, now dashed line in Fig. 4) splits into a
variety of new L-modes. According to the model
of superposition the original modes of the emp-
ty pipes (without mechanical loading) L(0,1),
L(0,2), describe the asymptotic behavior of the
fluid filled pipe. Additional asymptotes are built
by the guided waves of the water column with
ideal rigid boundaries. Due to the presence of
multiple asymptotes the higher order modes (m
> 1) are “jumping” between them. This results in
high and low dispersive frequency intervals of
each new dispersion curve (e.g. L(0,2)).

Within the fluid an additional axisymmetric
mode M1 (Fig. 4) is formed which is correlated
to the sound velocity of the fluid. For “low” fre-
quencies its displacement is concentrated to
the inner pipe [15] and therefore it is propaga-
ble by excitations sole to the fluid. Both the
L(0,1)-mode and the M7-mode have a dominant
axial displacement, the first mainly within the
pipe wall and the second within the fluid. By
loadings on the outer pipe wall (e.g. embedding
or buried pipes) two more axisymmetric modes
can occur - depending on the elastic properties
[8], [11]. However, the present studies con-
centrate on the fluid-mode M1. The outer pipe
wall is assumed to be free.

Dispersion: water-filled plastic pipe
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Fig. 4: 2D-FEM-solution: dispersion diagram of longitudinal modes L and the fluid mode M1 of a water-filled plas-
tic pipe (E = 5.787 GPa, u = 0.3, p = 1380 kg/m? d;i = 99 mm, d, = 110 mm) with identification of the asymptotes
of the empty pipe (black - dashed) and water cylinder (green - solid).
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Dispersion: water filled plastic pipe D=100mm with air phase D=10mm

3500 " o
@ 1 s . :
1 L] 3
1 . Hl : +
3000 | ! R A ° 3
o2 . R |
! L L02) L(0,3fs, s o * FEM solution
| 1 | |
2500 . .
. ~|c e " Asymptote
—_ L Seessess Fra1:.-,;'“0mor-yvcntr.; . -2 water-cylinder
~ 2000 = <~ 1{0,1)
E L(0,1) L .
8 1 — - Asymptote
21500 _* -‘!‘ ;
@ 1 empty pipe
1
L ] 1
1000 - -
® i =
M1
500 | B b oo
air-mode 1
o | |
0 10 20 30 40 50
f [kHz]

Fig. 5: 2D-FEM-solution: dispersion diagram of longitudinal modes L and the fluid mode M1 of a water-filled plas-
tic pipe (E = 5.787 GPa, u = 0.3, p = 1380 kg/m? d; = 99 mm, d, = 110 mm) with inner gas phase (air dai- = 10
mm); with identification of the asymptotes of the empty pipe (black - dashed) and water cylinder (green - solid).

As a consequence of the liquid filling the
L(0,2)-mode is switched to a higher cut-off
frequency (Fig. 4). Below the first cut-off fre-
quency (10 kHz in Fig. 4) the new fundamental
L(0,1)-mode on the pipe wall is non-dispersive
and almost constant. Furthermore the fluid
mode M1:

- propagates with a velocity clearly be-
low the velocity of a free wave (cy =
1480 m/s),

- shows a minimum in the proximity of
the first radial frequency (fy = 5 kHz,
empty pipe with free boundaries) and

- follows the dispersion curve of the
L(0,1)-mode of the empty pipe (black
dashed line in Fig. 4) above the radial
frequency (f > fy).

Assuming a further additional fluid phase with
lower compressibility (e.g. steam or air in the
center of the pipe) the dispersion diagram will
slightly change for the higher frequencies. This
complies with the model that the complex
acoustic waveguide of a liquid filled pipe can
be approximated by the superposition of cylin-
drical structures representing the different
phases with rigid boundaries. But in the lower
frequency range (below the first radial fre-
quency f < 5 kHz) the fluid-mode M1 “jumps” to
the former L(0,7)-mode of the empty pipe
(compare Fig. 4. and Fig. 5).

The gas phase delivers an opposing unsym-
metrical boundary condition because of the
differences in the bulk modulo (water — gas /
water — pipe wall). This lack in symmetry leads
to the “jumping” of the M1-mode. In contrast a
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material which brings symmetric boundary
conditions (like rigid walls or higher elasticity)
would not evoke a mode-jumping.

The higher the frequency becomes the lower
the influence of the gas phase (in the pipes
center) gets. The acoustic displacement con-
centrates along the area of the inner pipe wall.
This behavior corresponds to the model, so
that the range of influence of a boundary (with
varying impedance) is mainly limited to the
wavelength of the acoustic signal. Accordingly,
the fluid mode M1 follows the L(0,7) mode if
the wavelength becomes smaller than the in-
ner radius of the pipe (Fig. 4 and 5).

Analytic Approximation

In addition to the numerical studies three ana-
lytic solutions (2), (3) and (4) can be found in
literature [4], [5], which can be used to approx-
imate the characteristics of the fluid mode M1
— without complex simulations.

The main approximations of Kuhl [4] and Pin-
nington [5] base on investigations of Korteweg
(1878) [10], Résal, [16] und Moens. A more
exact — but also complex — solution is present-
ed by Muggleton [17].

Both approximations represent asymptotes for
the phase velocity. The approximation of Pin-
nington (4) is related to frequencies below the
first radial frequency (2) and Kuhl's formula (3)
approximates the velocity for higher frequency
above the radial frequency. The first radial
frequency can be calculated with (2).
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Equ. 2. First radial frequency, r — mean radius of
the pipe, pw — density of the pipe wall, y - poissons
ratio
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Equ. 3. Approximation of Kuhl [4], ¢ — sound veloci-
ty of the fluid inside the pipe; co — bulk velocity of the
fluid in free space; Ko — volume elasticity of the fluid;
Ew — Elasticity of the pipe wall material; d, — pipes
outer radius; d;— pipes inner radius
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Equ. 4. Approximation of [5], [10], d; pipes inner
diameter, h — wall thickness

All three equations imply that the propagation
characteristics mainly depend on the effective
elasticity of the pipe wall — as a combination of
bulk elasticity and mechanical behavior of the
whole geometry. From Equ. 3 and 4 it can be
inferred that, even for infinite pipe wall thick-
ness, the effective velocity in the fluid ¢* con-
verges to a limit value, which depends on the
elasticity only. As an example the value for
steel will not cross 98% of the velocity of the
free wave in water (here ¢y = 1480 m/s).

Verification

The presented investigations mainly consider
the dependency of the fluid-wave propagation
inside a pipe on the elasticity of the pipe wall
and its geometry. Referring to this two simula-
tion based examples were demonstrated (Fig.
4 and 5).

In consecutive steps selected numerical results
are validated with acoustic measurements
using a water filled plastic pipe. In addition, the
common low frequency approximations [4], [5]
for large scale pipes with elastic boundaries
are related to the numerical results and their
validity is shown.

Those verifications as well as a further param-
eter study concerning the influences of the
pipe walls elasticity, of the diameter and of the
wall thickness will be presented at the confer-
ence.
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