
	 The European Test and Telemetry Conference – ettc2020	 170

DOI 10.5162/ettc2020/6.1

Beholder
Automated Data Validation in Flight Test

Miguel Arevalo Nogales
Airbus Defence and Space
miguel.arevalo@airbus.com

Abstract:
Current aircraft development mandate for very complex data acquisition systems, the amount of pa-
rameters being stored has grown over the years from a few thousands to almost half a million. Data
validation and sanitization has become a priority, especially given current (unattended) data analysis
techniques. These two problems mandate for an automated verification and validation system,
capable of detecting anomalies in real time [1].

Airbus Defence and Space has developed a custom solution to this problem, it is known as Beholder.
This software leverages user knowledge in the form of rules, making them into a validation piece of
code which is automatically loaded and executed over a data flow.

Airbus Daemons builds up on current Data Server technology to support an automated process exe-
cution system. The combination of both, Daemons and Beholder, provide Flight Test with an automat-
ed, unmanned data validation procedure, improving data quality and enhancing response times to
erroneous sensors or recordings.

Key words: Automation, validation, rule, sensor, acquisition, testing.

Introduction
Aircraft’s data analysis can take place in sever-
al phases, from system development to in ser-
vice maintenance. We can, broadly speaking,
group these phases into:

 Development

 Certification

 Delivery

 In service

These phases require different types of data
acquisition systems, ranging from very intrusive
at the very beginning to almost non-existing in
the “in service” phase.

Development phase is, probably, the most in-
tense phase regarding data acquisition. Design
offices have to test their theoretical models in
real world conditions, system integration has to
be tested and design problems may arise. The
consequence is data acquisition is really in-
tense, not only internal aircraft data is recorded,
but custom instrumentation is installed and
prone to changes, having to deal with changing
needs. All this facts make data validation espe-
cially important during this phase.

Certification can also require a complex data
acquisition system to provide proper evidence
to authorities, guaranteeing not only the aircraft
meets specifications, but also and most im-
portantly flight safety.

Both development and certification have to deal
with non-aircraft native sensors, added on pur-
pose to provide further data to analysts. These
sensors must be treated with special care
since, by their nature (exposition, installation
limits, etc.), they are susceptible to failures.

Delivery and in service phases normally rely on
simpler acquisition systems, usually no instru-
mentation is present, and analysts rely on bus
recorded data.

All this data is later on used for data analysis,
be it a design change needed to fulfil specifica-
tions, some kind of evidence needed to certify
the aircraft or fleet analysis for predictive
maintenance. Of course if data quality is no
good all these analysis will be impacted.

Data acquisition plays a major role in aircraft
development but, how can we guarantee data
quality? Manual validation is costly and error
prone, especially in modern developments due
to the sheer amount of acquired data; some
way of automatic data validation is needed.

	 The European Test and Telemetry Conference – ettc2020	 171

DOI 10.5162/ettc2020/6.1

Solution Overview
Beholder is Airbus Defence and Space solution
for rule analysis and anomaly detection.

In an ideal world every system’s expert would
check for data quality not only after the test but
before and during the test itself, meaning that if
the data is not up to the quality levels needed,
the test could be stopped, resulting in improved
safety conditions and reducing expenses in
unproductive tests. Due to current acquisition
systems complexity and aircraft testing pace,
where several flights are performed in a single
day, this is utopic.

Beholder answers this problem by leveraging
expert knowledge, in the form of validation
rules, and produces a simple to read log where
every rule occurrence during the flight is rec-
orded.

This methodology guarantees experts are not
encumbered by their computing skills and can
focus on defining a good-enough rule set that
grants recorded data is up to required quality
levels for later analysis.

Beholder makes test validation an autonomous
task, meaning the expert does not need to vis-
ualize or manually analyse the test recording to
validate data, but this process has to be exe-
cuted manually whenever a new test is record-
ed.

Data recording in Flight Test normally happens
on-board during the flight, meaning the whole
data set is not available until the aircraft lands
and the hard drives are processed. This task is
time consuming and can take place during night
time; the experts may not be there to validate
their data when the data is available.

Airbus Defence and Space has developed a
Daemon Automation System intended to exe-
cute tasks whenever a new test shows in the
servers.

This system provides several advantages to
manual systems:

- Tasks can be executed without human
interaction, they can be executed during
night hours and their results are normally
available next day in the morning.

- No human interaction diminishes failure
risk and improves timing by not requiring
long working hours or turns.

- Validation sharing, which is sometimes
overseen if user does not see immediate
profit from it, is improved as it is a natural
product of standardised rule sets and vali-
dation procedures.

Beholder
The rationale behind Beholder is that an expert
can write a rule set that defines the data quality
level for the operation of the system, detecting
anomalies, strange working conditions, and
situations where limits or thresholds surpassed.

Manually detecting these conditions is possible,
but it is not a desirable approach since it is te-
dious, error prone and time consuming.

Beholder is based around the following con-
cepts:

- A rule is a logic condition which can be
evaluated by a common compiler into a
Boolean value.

- Rules are external to Beholder; no rule
logic is stored inside the application.

- Each rule can be triggered in every instant.

- All rules are evaluated at the same pace;
this eases rule & parameter synchroniza-
tion. This is what commonly known as
CVT: Current Value Table.

- Rules can be grouped in sets; a set de-
fines a system’s behaviour.

- Beholder’s output is a time line describing
when rule’s conditions are met: the rule is
true.

As a software application Beholder’s main
characteristics can be summed up as follows:

- Multiplatform: developed in Java, Open-
JDK 1.8 [2] [3] compliant code.

- Based on Flight Test Multiplatform Analy-
sis Software (FT+) and Dataserver tech-
nology.

- UI and BATCH processing modes. Normal-
ly the data validation process takes place
in an automatic, unmanned way, but a UI
offers the possibility to run Beholder on
purpose over a set of tests.

- Dataserver is used as the data providing
technology, meaning IRF, PFF, or CDF
files are readily accessible.

- Since it is Data Server based Client –
Server technology offers several benefits
including: scalability, heterogeneous sys-
tems, etc.

- Automatic code generation. Beholder does
not store rules inside its code, they are de-
fined externally to the application. In order
to get the best performance user rules are
automatically transformed into Java code,
which is compiled and linked dynamically
in execution time.

	 The European Test and Telemetry Conference – ettc2020	 172

DOI 10.5162/ettc2020/6.1

- All Java [2] syntax functionalities are al-
lowed in rule definition: simple mathemati-
cal functions, more complex functions as
defined by Math class, etc.

- Internal Beholder functions. In addition to
Java functions Beholder provides a set of
custom, internal functions to be used in
rules:

- Timers: a timer is a special function in-
tended to measure the amount of time a
rule has been in certain state.

- Buffering functions: some functions need a
time slice to be usable, relying on past da-
ta to provide a meaningful value. Examples
of this kind of functions are maximum, min-
imum o mean values.

- Macros. There are certain macro values
that are usable within Beholder rules, for
example: current time, analysis starting or
ending times, etc.

- External mathematical functions: the idea
of these functions is extend Beholder func-
tionalities to Machine Learning systems,
including classification algorithms, etc.

From a design [4] [9] [7] [8] point of view Be-
holder is divided in several modules:

1. Rule analysis and transcription

2. Beholder core

3. Loggers

4. Interface

Prior to rule execution Beholder needs to tran-
script natural language syntax into a computer
intelligible language, in this case Java code.

Schema 1: Beholder rule preparation workflow.

The process follows the following steps:

1. Rules are loaded from a user selected
database

2. Parameters are identified and replaced
with a placeholder. This placeholder is a

link (pointer) to a memory location that is
going to hold requested data, this data
changes every sample.

3. Timers are identified and extracted, for
every timer a new condition and rule is
created. Original timers are replaced, like
parameters before them, by a pointer to a
memory location; this location will hold the
timer value after the rule has been evalu-
ated.

4. Buffering functions are identified and re-
placed by pointers, like parameters and
timers before them.

5. Rules are translated into plain Java lan-
guage, every rule is written as a different
class, compiled, linked and loaded dynam-
ically [5] [6] into Beholder core.

Beholder core is the processing nucleus of the
program, all other parts attach to it, preparing
rules, providing data or consuming rule events.

Schema 2: Beholder core diagram. Once rules are
loaded into the core they are evaluated using Da-
taserver provided CVT data.

Beholder is based in a processing pipeline; this
pipeline is repeated for every sample read from
Dataserver (CVT data in Schema 2).

1. Data is read from the Dataserver, one DBT
at a time. This DBT contains all parameter
information for a current time.

2. Data is copied into a static data array. This
is needed to ensure all rules get to access
their parameter information properly.

3. Elaborated functions are executed using
this static data array.

4. Timers rules are evaluated and the static
times array updated with their values

5. Rules are evaluated, in this step all varia-
ble values (buffered function values, tim-
ers, etc. are known).

6. An event is thrown for every rule state
change. These events contain relevant in-
formation such as time, change status
(true to false or false to true), etc.

	 The European Test and Telemetry Conference – ettc2020	 173

DOI 10.5162/ettc2020/6.1

Schema 3: Internal Beholder core workflow.

Events are processed asynchronously by dif-
ferent classes, external to the calculus core;
some of these classes provide a graphical rep-
resentation of the events whereas others write
rule events in different formats (log files, data-
bases, etc.).

Some examples of loggers include, but are not
limited to:

- Database logger, where each event is in-
serted into a results table.

- Simple text logger, output is a plain text
file.

- Summary logger, where rules are grouped
by type.

Beholder user interface is a detachable module
intended to offer flexibility in test selection and
process execution. From a programmatically
point of view the design follows a MVC para-
digm, separating control agents from graphical
representations and model structures.

Image 1: Main graphical interface.

Interface is divided in three rows:

- Top row holds an icon bar for opening and
closing sessions, selection the amount of
threads used for analysis or customizing
outputs (logger types).

- Middle row is dedicated to test selection.

- Bottom row has three buttons:

o Load database

o Start analysis

o Exit application

As can be seen middle row holds most of the
options, the idea is for the user to proceed from
left to right, top to bottom selecting options:

- Dataserver

- Aircraft model and serial number

- Data file filter

- Acquisition system type (DFDR and or
AFDX)

Once this information is filled in user can look
up for files matching this criteria. Files are pre-
sented in the available file list, and can be
transferred into the selected file list.

For each file selected user is offered the option
to specify a custom time slice or set of time
slices. User is offered a default time slice cover-
ing the whole test.

Once all this information is selected the analy-
sis is ready to proceed, user must only provide
a database containing a rule set.

When in UI mode there are several loggers
active intended to provide enhanced visual
information to user, whereas in batch mode
graphical loggers are reduced to save up re-
sources and status information is shown in a
command window.

In order to properly display rules and events a
dedicated graphical logger is shown, the De-
tected Events window (see image 3).

Image 2: Detected events window.

	 The European Test and Telemetry Conference – ettc2020	 174

DOI 10.5162/ettc2020/6.1

This logger displays a table with a single row for
every condition met, this table shows rule ID,
aircraft information, starting and ending times
and some rule information such as rule group,
description or severity level.

While Beholder is running Analysis status win-
dows displays information about the whole pro-
cess, seen as a data processing task. Condi-
tions are show when they start or end, but the
main task of the window is to provide infor-
mation about the data transfer status.

Image 3: Analysis status dialog

Relevant data retrieval information such as
aircraft, data transfer status and connection
settings are shown in this logger.

Real Time Validation
Data corruption can sometimes happen during
testing, due to the large amount of systems and
parameter sometimes it is not feasible to check
all these data during testing phase, moreover,
even in the event of being able to do so, doing it
manually is error prone and stressing.

Beholder can act as a real time validation sys-
tem.

Under this working scenario Beholder works
exactly in the same way as described before,
but there are differences in parameter inputs
and capabilities.

- Beholder limits itself in the amount of rules
being analysable. This is a consequence of
having to run in real time, if rules cannot be
analysed in a timely manner it is better to
split the ruleset into smaller sets and exe-
cute multiple Beholder instances.

- Data is not provided by an offline Da-
taserver but an IENA packet one. This type
of Dataserver is a real time based server
offering the same access protocol to real
time telemetry data. The fact that data ac-
cess is homogeneous between real time
and files greatly simplifies the application.

- Due to real time Dataserver way of working
there is no need to select an aircraft or da-
ta file, the Dataserver already knows which
aircraft, MSN and test number it is receiv-
ing data from.

- A simplified UI is used, only detected
events are offered and a telemetry status
monitor is provided. This interface is con-
trolled by the RTMS monitoring system,
ensuring it is auto relaunched if it fails.

Real time autonomous validation is a great
addition to any telemetry system; typically this
was done with ad-hoc applications meaning
small changes in sensors or parameters im-
pacted monitoring software.

Beholder splits parameters from its validation
system and the software used for it, improving
validation opportunities.

A relevant real time monitoring use scenario,
that showcases the advantages of this separa-
tion, is adding new rules in real time while the
test is being performed. In this use case user
can define a new rule, add it to Beholder’s da-
tabase and restart the application. Beholder will
analyse the rule and compile it into working
code, add it to the rule pool and continue the
monitoring process.

In order to improve performance real time mode
introduces a key characteristic over standard
Beholder, compiled rules are kept from one
execution to another, meaning that if there are
no rule changes between executions Beholder
does not need to recompile the whole ruleset.
This optimization is only used in real time be-
cause it may lead to lazy condition checking
problems; on the other hand it improves appli-
cation start time, which is necessary if the ap-
plication is to be managed by RTMS (Real Time
Monitoring System).

	 The European Test and Telemetry Conference – ettc2020	 175

DOI 10.5162/ettc2020/6.1

Daemon System
Daemon system is an external application used
to automatically run analysis tasks whenever a
new test is detected in Flight Test data servers.

Daemon concept is similar to the one used in
computer science, where a program, the dae-
mon, is always running in the background. This
program is normally in sleeping state, not con-
suming resources, but it awakes periodically
and runs a predefined task.

Schema 4: Daemon system

The rationale behind Flight Test Daemon Sys-
tem is that whenever a new flight is uploaded
into the server a daemon, the Dataserver Dae-
mon, will find it and upload its meta-information
into a database, the Process Database. This
information describes a test univocally:

- Aircraft model

- Manufacturing serial number

- Test identification: test type plus number.

Other daemons, known as Process Daemons,
consume this information; they add their own
information to the database and launch a user
defined analysis process.

This process can be configured when creating
the daemon, in the case we are analysing it is a
Data Acquisition Validation Process which is
uses Beholder.

The information added to the database is a
register, with the same meta-information added
by the Dataserver Daemon, adding some addi-
tional data:

- Process Id.

- Processing machine.

- Processing date.

- Process status.

When a new process is launched it updates its
status to ONGOING, if it fails it will automatical-
ly change to ERROR and when it finishes it is
updated to FINISHED.

There are control mechanisms in place to en-
sure daemons are alive, checking daemon sta-
tus and working times. These guarantees there
are no zombie processes and all tasks are exe-
cuted appropriately.

When a task is updated to an error status other
daemons running in different machines to the
one that executed this process previously can
re-execute the process, this leads to execution
redundancy.

One important fact about daemons is that mul-
tiple daemons can be configured to take care of
the same task type. We may have multiple Val-
idation Daemons so when several flights are
uploaded into the Dataserver at the same time
they can be processed concurrently by different
machines. This kind of redundancy ensures that
if a machine is down for any reason others can
take its place and keep with the data analysis
tasks.

Airbus Daemons have the following characteris-
tics:

- Multiplatform, developed in Java using
OpenJDK 1.8 [3] compliance.

- Centralized database based [10]. This en-
sures multiple daemons, multiple machine
synchronization.

- UI is web based.

- Daemons can be tied to a user group,
meaning users can be notified whenever a
daemon is down or a new test has been
analysed.

Daemons interface has been developed using
HTML technology. This web interface com-
municates with daemon database providing
information and control over existing daemons,
showing their status (sleeping, working or
down).

Image 4: Daemon view

	 The European Test and Telemetry Conference – ettc2020	 176

DOI 10.5162/ettc2020/6.1

Interface offers not only daemon status but also
process information. From the interface any
user can order a test reprocessing, check its
status or see when it was processed and what
machine performed the analysis.

Image 5: Process view

Parameter Validation
Previous chapters showcased different aspects
of Beholder, but they did not delve deep into
how it can be used as a parameter validation
tool and what are the benefits associated to its
usage.

First thing to do is define what we should un-
derstand by parameter validation. Sometimes,
especially when dealing with complex system,
we incur in a misconception, mixing system
validation with parameter validation, it is im-
portant to make a difference between these two
concepts.

- Parameter validation only focuses in pa-
rameter value, checking if it is within limits
and its value is reasonable considering
contour conditions.

- System validation checks if the parameter
is right considering system’s current state.

As can be seen sometimes the difference can
be very small, since a parameter out of bounds
may not mean our sensor is misbehaving but
the system providing erroneous data.

There are several approaches regarding pa-
rameter validation:

- Threshold rules. In this case the user de-
fines an upper and lower limit for the pa-
rameter. If the parameter exceeds these
limits then a warning is issued.

A especial case are defined state rules, in
this case a parameter can only take a

small set of predefined values, for example
Open-Close o True-False.

- Slope rules. These rules are based not in
parameter’s value, but how the parameter
changes from one instant to another.

Beholder offers several possibilities in this
situation; since we are computing a deriva-
tive we can do so taking into account a
predefined number of points, this buffer
can be selected by user when creating the
rule. We can also select the maximum or
minimum values for a given time buffer, or
even the mean.

- Cross system validation. It is common in
aeronautical environments to have differ-
ent systems provide different parameters
for the same measurement. A very useful
rule for parameter validation is to compare
the difference between parameters or the
delay between signals corresponding to
the same parameter.

- Data alive check. Some straightforward
validation consists on checking data
moves and reacts to stimulus.

Once rules have been defined the instrumenta-
tion validation phase starts. During this phase
systems are started, whenever possible, and
data is recorded into small test files, these files
are processed and added to Flight Test Da-
taservers.

As seen in previous chapters Daemons detect
these tests and run specific rule detection tasks
on them, looking for sensor misbehaviours,
parameter exceedances, etc.

The result of this analysis is automatically up-
loaded to web servers and communicated to
system owners and flight test instrumentation
personnel, when something strange is found
these groups can take proper action to fix the
issue or investigate it even further.

Image 6: Rule database example

	 The European Test and Telemetry Conference – ettc2020	 177

DOI 10.5162/ettc2020/6.1

Conclusion
Current aircrafts mandate for a large amount of
FTI sensors, sometimes more than on thou-
sand. These sensors are added to an already
large parameter dataset provided by the air-
craft.

Validation of all these parameters is a huge
task for which an automated system is neces-
sary, manual validation does not guarantee
good enough quality standards.

Making an automated system, open for end
users usage, like design offices, not only im-
proves Flight Test data validation, but helps
users to get involved in their system’s acquisi-
tion task.

Since data is automatically processed large
amounts of test can be used for validation,
meaning a new realm of validation techniques
opens to end user: Big Data and machine learn-
ing. Using machine learning algorithms for data
validation can help to identify upcoming prob-
lems, meaning FTI can make predictive
maintenance to the acquisition system.

An additional benefit of automated data valida-
tion is react time improvement. Current tech-
nologies such as 3D printing or Data Science
applied to system analysis allow for fast paced
development, sometimes referred to as fast
prototyping. This methodology mandates for
improvements in FTI installation and validation,
due to the prototype nature of the modifications
being installed in the aircraft.

References
[1] Avner Engel. Verification, Validation, and Testing

of Engineered Systems (Wiley Series in Systems
Engineering and Management Book 73). Wiley
(2010)

[2] Oracle. "Java SE". Oracle Technology Network.
(18 December 2014).

[3] Alex Kasko. OpenJDK Cookbook. Packt Publish-
ing (2015).

[4] Robert Lafore. Data Structures and Algorithms in
Java. SAMS (2003)

[5] Cay S. Horstmann. Core Java, Volume II - Ad-
vanced Features. Prentice Hall (2017)

[6] Glen McCluskey. Using Java Reflection. Oracle.
https://www.oracle.com/technical-
resources/articles/java/javareflection.html (Janu-
ary 1998)

[7] Trygve Reenskaug. Working with objects. The
OOram Software Engineering Method. Man-
ning/Prentice Hall. (1996)

[8] Gamma, Erich et al. Design Patterns. Addison-
Wesley (1995)

[9] Martin Kleppmann. Designing Data-Intensive Ap-
plications: The Big Ideas Behind Reliable, Scala-
ble, and Maintainable Systems. O’Really Media.
(2017)

[10] Michael J. Hernandez. Database Design for Mere
Mortals: A Hands-On Guide to Relational Data-
base Design. Addison-Wesley (2007)

