DOI 10.5162/ettc2020/6.6

Automated closed-loop testing of cyber-physical systems

Goncalo Valadas (Principal Engineer), Nuno Bustorff Silva (Business Development Manager)

Critical Software S.A., Pq. Ind. de Taveiro, Lt 49, PT-3045-504 Coimbra, Portugal
goncalo.valadas@criticalsoftware.com, nuno.bustorff@criticalsoftware.com

Abstract: Modern systems envisages fusion of technologies across the physical, digital and biological
worlds, an incoming era of cyber-physical systems powered by artificial intelligence (Al), the Internet
of Things (loT), autonomous vehicles and big data. More than any other industry, Aerospace &
Defence innovation and production demand precision and high-quality products. Aerospace &
Defence Industry must adopt features of modern product development like Agile methodologies,
DevOps, and tests automatization, to accelerate time to market and business value.

The increasing complexity and validation costs raises an unaffordable trend, particularly in the
evolution from hardware-based systems to modern software-based systems, where the costs to
develop, integrate, and maintain software continues to grow at an unpredictable rate.

With the objective of providing an infrastructure for testing high integrity cyber-physical systems in
closed-loop, Critical Software has designed and developed an end-to-end process, integrating Agile
methodologies, client toolchain and an automation testing platform. This integrated solution enables
real-time control and joint and flexible integration of simulation models and physical components or
subsystems to build a closed-loop test environment adaptable to any development environment.

This paper presents Critical Software's System Validation approach to reduce both the time and cost
of testing high-integrity and complex systems for the Aerospace & Defence Industry.

Keywords: Defence, Aerospace, Agile, DevOps, Testing Platform, Closed-Loop Testing, Regression
Testing, Security Testing, Cyber-Physical Systems, Complex Systems, Validation

1. Introduction

Developments in Artificial Intelligence (Al), the
Internet of Things (loT), autonomous vehicles
and big data enabled the creation of new
aerospace and defence systems that
historically were mainly hardware-based but
are gradually becoming more software-
defined [1]. Software defined means that
items or functions that were mainly physical
have now become virtual, controlled and
automated by software [2]. These systems
integrating computation, networking and
physical processes are called cyber-physical
systems. Examples of this systems are smart
measuring systems, robotics, wireless sensor
networks among others.

This evolution was triggered by the need of
OEMs to have faster access to the market,
boost efficiency and produce economy of
scale. The usage of virtualization, cloud
computing and artificial intelligence made

The European Test and Telemetry Conference — ettc2020

possible new technology developments and
complex networks generating huge amounts
of data to be analysed and measured [3] [4].

At the same time, the effort and time needed
to validate these systems also grow at an
exponential rate because of the increasing
configurability of these systems, the number
of external interfaces, and the need for safety-
related certification.

Within this scenario of constant evolution and
adaptation, it is impossible to continue to
execute these developments in a classical
waterfall lifecycle. Verification and Validation
activities must be performed from the
beginning of development and an iterative
approach that enables the system to be
developed and validated incrementally is
required. The new Agile approach seems to
solve all these problems, but a formal process
must be defined to guarantee that the System
Under Test is able to accomplish not only the
functional requirements but, sometimes even

194

more importantly, meets all non-functional
requirements when complete [5].

Validation activities shall be performed over
and over again, regressively, validating
disruptions, so an automated approach is at
once possible and necessary. Although it is
understandable and easier when it comes to
test software, it becomes more complex when
the testing environment also incorporates
hardware.

Beside the automation, another important
thing is to have all these activities integrated
into the customer’s build and deploy
environment. Establishing a continuous
integration environment improves reliability
and robustness of the validation process,
therefore also improving the reliability and
robustness of the system under validation as
well as its overall quality.

To overcome these challenges, Critical
Software defined a process to validate high
integrity systems, addressing the validation of
software and hardware-in-the-loop and
resulting in important cost and time savings,
as presented in the following sections.

2. Integrated Validation Process

Critical Software’s integrated validation
process enables the specification,
implementation and execution of the
necessary test cases to validate the System
Under Test. It is composed of four main
activities as outlined in the figure below.

Test Coding and Formal Test
Dry Run Execution Execution

Figure 1: Process for system validation

Test
Specification

Test Environment
Selection and

Preparation

2.1 Test Specification

In order to properly establish a test
specification, the first step should be to gain
knowledge about the system. This is done
through performing interviews with the
development team, reading the system
requirements specification (SSS), and
reviewing the existing interface control
documents (ICDs).

The European Test and Telemetry Conference — ettc2020

DOI 10.5162/ettc2020/6.6

The validation and integration strategies are
defined at this stage. The testing methods and
activities to be performed are identified,
including the different types of tests that the
validation process will have to execute (e.g.,
security, performance, usability, other
functional or non-functional tests). The
criticality of requirements and system
components, software or hardware, are
thoroughly detailed. Certification against
safety standards, e.g. IEC 61508 or its industry
specific derivatives, require that these
activities are documented to provide evidence
to the certification authority.

Then, the test plan to validate the system is
created, which covers all these definitions.
Because the test outputs will be validated
against expected values, in this phase the
applicable thresholds wused in resulting
assessment of non-deterministic systems are
also defined, as these systems are not usually
precise but will fit into a range of acceptable
outputs.

Mapping to the Agile world, this could be the
Product Vision and Backlog creation phase.
The test sets are the epics and the test cases
are the user stories described with the
acceptance criteria.

2.2 Test Environment Selection and
Preparation

The environment selection and preparation
are important in establishing the basis for test
automation. The identification of the target
system, both physical and logical interfaces,
are the most relevant aspect in environment
preparation.

To perform the automation of integration and
system tests, Critical Software have developed
a System Validation Facility platform, an asset
providing the basis for the development of
automated test sets that will exercise the
system and capture their outputs to validate
them against expected values.

The system validation facility is an automated
execution environment responsible for test
execution, including the simulation of the
necessary input conditions and the evaluation
of response values. It also compares expected
and actual test case output values, validating

195

them according to the acceptance criteria
defined for that test case [6].

Another important feature of the system
validation facility is the ability to perform fault
injection at hardware level. The ability to
inject faults at hardware level enables the
tester to simulate internal faults on the
System Under Test and evaluate the reaction
to errors inserted in different parts of the
system, such as the processor registers, the
memory, or the application code. Faults are
injected with minimum interference with the
target system workload, making it almost non-
intrusive. This enables a very robust test
capability of the safety and reliability
mechanisms which are not easily testable.

In the Agile process this phase matches sprint
0, where the implementation sprints are
prepared, and the backlog is prioritised.

The environment preparation also includes
the setup of a continuous testing environment
where automatic build, test and static analysis
is performed when a change occurs in the
version control system repository. At this
point, three major verifications are being
performed: (a) that the build system s
correctly generating the target system; (b) the
target system passes all defined test suites;
and (c) the system code complies with the
defined code quality rule set.

2.3 Test Coding and Dry Run

Test coding activity is where test cases defined
in the specification are implemented. This is a
manual coding activity where developers write
the code that executes steps defined in the
test case. The usage of Artificial Intelligence
techniques in this process to automatically
generate test case code would be beneficial as
systems become more complex. Input vectors
that stimulate the implemented test cases will
be defined separately in order to change these
inputs without having to rebuild the test cases
in question.

The European Test and Telemetry Conference — ettc2020

DOI 10.5162/ettc2020/6.6

System

+ eal O
| Under Test | @
1 !

Input

Automated
Reporting

Figure 2: Test Execution Scenario

The first item to validate is the correct
implementation of system interfaces. These
will transport the inputs of the test cases to
the System Under Test and return the relevant
outputs.

During this activity, dry runs of the test suites
shall be performed to guarantee that tests
execute as specified and, if not, are able to
debug and correct the test. At this time, the
first issues are raised allowing developers to
fix arising problems before the formal test
runs.

The wusage of an Agile methodology to
implement the tests and verify their
correctness enables incremental validation of
the test implementation and the System
Under Test, identifying the first issues to be
raised during these first dry runs.

Due to automation, these test suites can be
run when required to perform ad hoc test runs
or execute regression testing integrated into
the continuous integration environment.

When the test coding is finished and all tests
are behaving as specified, the automation
testing environment creation process has
been completed.

2.4 Formal Test Execution

The formal test runs are executed according to
plan, running the released tests against the
released system.

These activities are fully automatic and consist
in the execution of all tests which are to be
formally used for the certification record. They
automatically produce a report with the
validation evidence at the end of the process.

When the entire system is finished, a final
formal test is executed to produce the
documentation used for certification
purposes. At this point, the development must
be frozen and the version to be formally
tested should be released.

196

After this, the System Under Test is ready for
certification, but the automated environment
created can be continuously used to support
future enhancements of the system. If those
enhancements change the expected
behaviours or outputs, the automated
execution environment must be adapted
accordingly to support the new behaviour.

3. Conclusion

This paper presented an integrated process
allowing OEMs to enhance their product
development by automating the validation
process and to reduce the total cost of
ownership of critical systems through the
automation of several Verification and
Validation activities.

The usage of the System Validation Facility
enables the automation of the tests using
hardware-in-the-loop. The automation of test
suites reduces the time and effort taken to
realise test campaigns and eases the process
of producing certification records and
validation evidences. The ability to perform
regression testing gives engineering teams the
time to focus on high value tasks instead of
spending time re-running test suites manually.

Fault injection at hardware level enables the
tester to simulate internal faults on the
System Under Test and enable the validation
of hardware built-in tests as well as the
reaction to errors inserted in different parts of
the system such as the processor registers, the
memory, or the application code.

The usage of a SCRUM approach in developing
the automated execution environment is
beneficial as it means change can be managed
as an integral part of the process and also
shortens feedback loop.

In future work, the Critical Software’s System
Validation Facility aims to use Artificial
Intelligence to generate test cases that will
simplify the test specification activity and use
Artificial Intelligence to develop test data for
use as input vectors in test coding and dry run
activities.

Based on the experience of some of our
clients, this process reduced the TCO of critical
systems by up to 50%.

The European Test and Telemetry Conference — ettc2020

DOI 10.5162/ettc2020/6.6

References

[1] Grant J. McDonald, Yvon Audette (2018),
'Making the move to Industry 4.0,
published in Canadian Defence Review
Magazine, February 2018.

[2] Sadiku, M & Nelatury, Sudarshan & Musa,
S. (2017). 'Software defined everything',
4. 48-50.

[3] Daliri, A, Das, R, Orifici, A, Marzocca, P
and Cole, | (2019), 'Virtual Design,
Optimisation and Testing (VDOT)
framework for innovative sustainment’, in
Proceedings of the 18th Australian
International Aerospace Congress
(AIAC18: 2019), Melbourne, Australia, 24-
26 February 2019, pp. 122-128.

[4] Kim, Beom-Su & Kim, Ki-ll & Shah, Babar
& Chow, Francis & Kim, Kyong Hoon.
(2019). ‘Wireless Sensor Networks for Big
Data Systems’. Sensors. 19. 1565.
10.3390/s19071565.

[5] Valadas, G. (2019), 'White Paper - Using
Agile to Develop High Integrity Systems'
published by Critical Software, October
2019.

[6] A. Chaves, R. Maia, C. Belchior, R. Araujo
and G. Gouveia (2018), 'KhronoSim: A
Platform for Complex Systems Simulation
and Testing' 2018 IEEE 23rd International
Conference on Emerging Technologies
and Factory Automation (ETFA), Turin,
2018, pp. 131-138.

197

