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Abstract: 
Eye gaze trackers have been studied widely for their utility in aviation domain since long time. So far, 
numerous studies have been conducted in the direction of gaze-controlled interfaces for electronic 
displays in flights and Head mounted display systems under simulated conditions. In this paper, we 
present our study on usage of eye gaze trackers in real flight conditions and their failure modes under 
such usage conditions and illumination. We show that the commercially available off the shelf (COTS) 
eye gaze trackers with state-of-the-art accuracy fails to provide gaze estimates beyond certain level of 
illumination on the eyes. We also show that the limited available tracking range of eye gaze trackers 
limit them to provide gaze estimates even during the pilots’ natural operating behavior. Further, we 
present three approaches of developing eye gaze trackers which are designed to use webcam instead 
of infrared illumination and are aimed to be functional at high illumination conditions. We present our 
intelligent tracker, developed using OpenFace framework, provides comparable results to COTS eye 
tracker in terms of interaction speed for both indoor and outdoor conditions.  

Key words: Eye gaze tracking, Eye gaze estimation, Gaze controlled interface, Human Machine In-
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1. Introduction 
Eye gaze tracking is the process of estimating 
where a person is looking at. Eye gaze tracking 
technology is used to understand eye gaze 
scanning process, visual search and reading 
behavior from late 18th century. With availability 
of portable infrared based eye trackers, re-
searchers also explored controlling digital user 
interfaces just by looking at it. While the tech-
nique sounds intuitive, underlying technical 
limitations like innate eye movement process 
and the constraints on direct manipulation of 
graphical user interfaces so far restricted eye 
gaze controlled interfaces to limited applications 
for people with severe disability [3] and as a 
binary input channel (on/off) for a few 
smartphone video viewing applications. 

In recent time, a set of new applications were 
explored for eye gaze controlled interfaces 
where the operators’ situation impedes him/her 
to operate traditional physical or touch screen 
user interfaces. Examples of such situations 
include undertaking secondary tasks in automo-
tive [2, 8] and mission tasks inside combat air-
crafts [10, 11].  
 
Eye gaze tracking technology is widely explored 
in aviation domain for pilot training, understating 
pilots’ scanning behavior, optimizing cockpit 

layout and recently to estimate pilots’ cognitive 
workload [6, 9]. Although a commercial product 
is not yet available, different defense manufac-
turers are already investigating to use eye 
gaze-controlled interfaces inside cockpit. While 
most of the research on eye gaze-controlled 
interfaces for military aviation concentrate on 
Head Mounted Display Systems (HMDS) [4, 
11], this paper explores use of eye gaze con-
trolled interface for Head Down Display. The 
paper initially explored a state-of-the-art weara-
ble eye tracking device in a combat aircraft 
undertaking representative combat maneuvers 
and then proposed and evaluated a set of algo-
rithms for developing screen mounted eye gaze 
tracker for operating head down displays. 
These algorithms can also be used in transport 
and passenger aircrafts. 
 
The paper is organized as follows. The next 
section summarizes our earlier published re-
search on eye gaze-controlled interfaces fol-
lowed by the study on actual aircraft. Section 4 
presents different eye gaze tracking algorithms 
followed by concluding remarks. 

2. Earlier Research 
So far, we set up and undertook numerous 
investigations to study the utility of eye gaze 
tracking in aviation field. Our studies are set in 
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different conditions like a fixed base flight simu-
lator, a virtual reality (VR) based simulators. We 
also performed user studies in actual transport 
and military aircrafts. Our studies focused on 
evaluating pilot’s interaction experience for 
mission control tasks using gaze-controlled 
interfaces in simulators and actual flights.  
 
Initially, we set up a flight simulator and evalu-
ated gaze-controlled interface for military fast 
jets [10]. Our studies found that the gaze-
controlled interface statistically significantly 
increased the speed of interaction for second-
ary mission control tasks compared to 
touchscreen and joystick-based control sys-
tems. Subsequently, we tested the gaze-
controlled system inside a transport aircraft 
both on ground and in-flight with military pilots. 
We found that the pilots could undertake repre-
sentative pointing and selection tasks in less 
than 2 secs on average.  
 
We also integrated the COTS eye tracker to a 
flight simulator to evaluate the feasibility of its 
functions as a part of HMDS and evaluated the 
latency incurred to point at an aerial target. In 
parallel, we measured pilots’ various ocular 
parameters like fixation rate, pupil dilation and 
saccadic intrusion in standard and VR based 
flight simulators at various G levels in different 
combat aircrafts. We compared these metrics in 
various flight phases and during air to ground 
attack maneuvers [1]. 
 
In addition to utilizing COTS based eye trackers 
for our user studies, we studied the accuracy of 
gaze control in various acceleration due to 
gravity (G load) conditions under various flight 
maneuvers. We used a COTS eye-gaze tracker 
in an advanced jet trainer aircraft and we found 
that the error is less than 5º of visual angle up 
to +3G although it is less accurate at -1G and 
+5G [7]. In line with our error measurements of 
COTS eye gaze trackers under various flight 
conditions, in the next section, we present our 
analysis on various failure modes of COTS eye 
gaze trackers in actual flight conditions.  
 

3. Testing COTS tracker in Combat Air-
craft 

We have recorded data from two flights using 
the COTS eye tracker (Tobii Pro Glasses 2) 
which uses infra-red (IR) illumination-based eye 
gaze estimation principles [12]. The duration of 
the first flight is 55 minutes 58 seconds (Flight 
1) and another flight’s duration is 56 minutes 
(Flight 2), the flight profiles are furnished in 
Table 1 below. The eye tracker contains a front-
facing scene camera which records the first 

Table 1 Flight Profiles 

 

person view of the pilot. It also contains four 
eye-cameras, two cameras per each eye, to 
record the eye movements. The eye tracker 
estimates gaze points at a frequency of 100 Hz. 
The frame rate of scene camera is 25.01 fra-
mes/second at 1920 x 1080 resolution and that 
of each eye camera is around 50 fra-
mes/second with a resolution of 240x240. Each 
gaze point is recorded with a dedicated identifi-
er, called “gidx”. We initially used Tobii Pro Lab 
tool to analyze the recorded gaze samples and 
observed that both flight recordings contain 
gaze samples only for around 50% of the dura-
tion. We investigated this loss of data samples 
during the flight using the raw data provided by 
manufacturer in json format and by correlating 
the raw data with the eye images. 
 
The raw data obtained in json format contains 
various other information recorded during the 
flight like gyroscope and accelerometer data. 
We discarded the irrelevant information and 
retained the data points required for our investi-
gation of lost gaze points. 
 
At first, we synchronized the raw data stream 
and the eye camera stream in time scale since 
eye camera stream starts off with an offset from 
raw data. This is achieved using the Position 
Time Stamps (PTS) provided in both data 
streams. We also find that the different fre-
quencies of these two streams is a challenge 
for data synchronization. Hence, we considered 
the time duration between two successive fra-
mes of eye camera stream and consider all the 
corresponding gaze data points recorded during 
that time window. Thus, the latter frame and 
these data points together form one pair of syn-
chronized data points. Each time windowed raw 
data may contain multiple gaze points. Every 
gaze point with its “gidx” contains a status code, 

Sl No Objective Profile 
Flight #1 Maneuvering 

flight with 
head mounted 
eye tracker on 
Pilot in Com-
mand 

Take-off – climb – level 
flight to Local Flying Area 
– Constant G (3G and 5G) 
level turns both sides each 
– Vertical loop – Barrel 
Roll – Air to Ground dive 
attack training missions – 
Descent – ILS Approach 
and landing 

Flight #2 Non - Maneu-
vering flight 
with head 
mounted eye 
tracker on 
Pilot in Com-
mand 

Take-off – climb – level 
flight to Local Flying Area 
– Straight and Level cruise 
with gentle level turns – 
Descent – ILS Approach 
and landing 
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‘s’ which indicates the error associated to that 
datapoint, if any. The status code 0 indicates no 
error and any non-zero value of s indicates an 
error associated is with the data point. We ob-
served that all the gaze points with a non-zero 
status code are recorded as zeros for both x 
and y directions [0.0, 0.0]. The gaze points are 
provided in normalized values, hence the mini-
mum gaze point is [0.0, 0.0] and the maximum 
is [1.0,1.0]. 
We segmented the synchronized data points 
into two categories. The first category catego-
ry1 contains eye stream frames whose corres-
ponding gaze points have zero status code. 
The second category category2 contains those 
eye frames with all corresponding gaze points 
with non-zero status codes. There are frames 
whose data points have only a subset of gaze 
points contains zero status code. We did not 
consider these frames in our analysis as it 
brings uncertainty on eye image tagging. 
 
For Flight 1, we observed that out of 167,647 
frames, only 57,111 frames fall under category1 
and 69,732 frames fall under category2. For 
Flight 2, we observed that out of 167,567 fra-
mes, only 81,911 frames fall under category1 
and 51,402 frames fall under category2.  
 
Summarizing, 41.6% of the frames does not 
have any gaze points recorded during Flight 1 
and for Flight 2, this stands at 30.7%. Further, if 
we just look at unsynchronized raw data, both 
flights recorded more than 51% of the gaze 
samples are error-prone. 
 
We visually inspected these flight recordings 
and we hypothesize two reasons for this data 
loss.  

1. Higher levels of illumination on eyes 
may affect the eye tracker resulting in 
no gaze estimation.  

2. Limited field of view (FoV), especially in 
the vertical direction, renders the eye 
tracker with no gaze estimates when 
user looks beyond the tracking range. 

We validated our hypothesis 1 using the eye 
images in the above mentioned two categories. 
Since the recorded video stream is an IR video, 
we converted all eye images into grayscale and 
computed average of all the pixel values for 
each image present in both categories. Figure 1 
represents the histogram of image intensities 
for category1 and category2 for Flight 1. Figure 
2 represents the same for Flight 2. Figure 1a 
indicates that 93% of the images under catego-
ry1 have an average intensity less than 131. 
But, category2 contains 42% with average 
 

 

 
Figure 1. Histogram of image intensities for Flight 1 

1a. Category1(Top) 1b. Category2 (Bottom) 
 

 
intensity higher than 131. Further, this can also 
be observed in Flight 2 case, shown in Figure 2. 
Around 42% in category2 have higher intensity 
than 150, while category1 contains 94% of the 
images with intensity less than 150. This indica-
tes that images with higher illumination, preci-
sely above 131 in Flight 1 and above 150 in 
flight 2 have low probability to obtain accurate 
gaze estimates.  
 
While this evidence supports our hypotheses 1 
partially, we observed that there is overlap in 
the left and right histograms plotted in Fig 1 and 
Fig 2. Hence, we could not identify a clear 
average image intensity threshold in order to 
identify all the failure modes of eye gaze esti-
mation.  
We further investigated the data points in cate-
gory2 to understand the 58% of the datapoints 
which have lower image intensities than above 
mentioned thresholds for each flight using our 
hypotheses 2. Since we observed that the gaze 
estimates are lost for a sequence of eye image 
frames, we clustered the datapoints in catego-
ry2 based on their “gidx”s. If a sequence of 
datapoints under category2 are having succes-
sive gidx’s, then all those points are considered 
as a single cluster. Hence, each cluster can 
contain one datapoint or several datapoints. 
Extending our hypotheses 2, we assumed that 
the pilot must be looking at a  
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Figure 2. Histogram of image intensities for Flight 2 

2a. Category1(Top) 2b. Category2 (Bottom) 
 

position closer to the extreme tracking positions 
(beyond which eye tracker cannot track), just 
before or after the eye tracker fails to provide 
gaze estimates. During our visual inspection of 
first person video recorded using eye tracker, 
we observed that the pilot looks down for vari-
ous activities like looking at the information 
displayed in the Multi-functional displays 
(MFD)s while keeping the head faced horizontal 
(perpendicular to the vertical axis of the air-
craft). During such scenarios, we observed that 
gaze points were not recorded.  
 
Hence, we analyzed three preceding or subse-
quent datapoints adjacent to each cluster, 
which we refer to as boundary datapoints. We 
looked for boundary datapoints with gaze valu-
es beyond 0.8 and less than 0.2 (in both x and 
y). If any of the boundary datapoints satisfy 
above criterion, then we may infer that the loss 
of gaze points is due to the pilot looking beyond 
the tracking range of the eye tracker.  
 
For flight 1, we obtained 12178 clusters for 
69,732 datapoints. For these clusters, 11,865 
(97.43%) clusters have boundary points that 
satisfy the above criterion. To understand 
image intensities for these datapoints, we plot-
ted a histogram of the image intensities for the 
datapoints whose boundary points satisfy 
above criterion. We observed that these image 
intensities lie in the range of [96,145]. This is 
clearly in the overlap range identified between 
Figure 1a and Figure 1b.  

 
Similarly, for flight 2, we obtained 8646 clusters 
for 51,402 datapoints. For these clusters, 8408 
(97.24%) clusters have boundary points that 
satisfy the above criterion. Interestingly here as 
well, we observed that the histogram of image 
intensities for the above points lie in the range 
of [117,164], which is the range of overlap iden-
tified in Figure 2a and Figure 2b.  
 
Thus we infer that, this eye gaze tracker could 
not identify beyond certain illumination level or if 
the user is looking beyond its tracking range. 
We should note that the pilot is performing his 
assigned tasks during the flight and maintained 
his natural behaviour. This indicates that the 
tracking range offered by this eye tracker is not 
sufficient for military aviation environments. 
 
Hence, using our two hypotheses and the raw 
data, we studied the failure modes of eye gaze 
tracker in aviation environment. We further add 
that, while commercial off-the shelf eye trackers 
may be used in real aviation environments, 
researchers and practitioners should keep in 
mind about both the horizontal and vertical tra-
cking range of the eye tracker and it’s robust-
ness to external illumination as there is a high 
chance that the illumination varies rapidly at 
high altitudes in high speed maneuvers. 
 

4. Developing Eye Gaze Trackers 
In this section, we have described three differ-
ent eye tracking systems and compared them 
through user studies Initially we described the 
different algorithms used for estimating gaze 
followed by two user studies. 
 
HoG based Gaze Tracking System 
We used a pre-trained facial landmark detector 
with iBUG 300-W dataset [iBUG 2019], which 
works on classic Histogram of Oriented Gradi-
ents (HoG) feature combined with a linear clas-
sifier to detect facial landmarks [Rosebrock 
2019]. In comparison, Haar cascades are a fast 
way to detect an object but often detect more 
false positives compared to HoG and linear 
classifier [Dalal 2005]. HoG features are capa-
ble of capturing the face or object outline/shape 
better than Haar features. On the other hand, 
simple Haar-like features can detect regions 
brighter or darker than their immediate sur-
rounding region better. In short, HoG features 
can describe shape better than Haar features 
and Haar features can describe shading better 
than HoG features. In this case the shape is 
more important as we need the landmarks of 
the face hence HoG features produced a better 
result. After detecting eye region, we detected 
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pupil location by selecting the smallest rectan-
gle possible in the eye region where the pupil 
can exist.  After retrieving pupil locations, we 
calculated the Eye Aspect Ratio (EAR). We 
have noted that the eye aspect ratio changes 
with respect to the distance between the user 
and the camera.  We have modified the EAR 
calculation formula by using the distance be-
tween the two eyes as denominator.  
Webgazer.js 
We implemented a second system using 
webgazer.js [Webgazer 2020; Agrawal 2019] to 
compare performance of the proposed system. 
Webgazer.js runs entirely in the client browser. 
It requires a bounding box that includes the 
pixels from the webcam video feed that corre-
sponds to the detected eyes of the user. This 
system uses three external libraries (clmtracker, 
js_objectdetect and tracking.js) to detect face 
and eyes. It has methods for controlling the 
operation which allows us to start and stop it. 
We have taken the mean of last thirty points 
from webgazer.js for better target prediction 
and accuracy of system. We also calculated the 
mean value during this time to predict the gaze 
location on a webpage. 

Intelligent System 
We have developed a gaze block estimator 
which maps user’s eye movements to 9 screen 
blocks using OpenFace [Baltrusaitis 2018] 
toolkit. Since the OpenFace (figure 3) was re-
ported to have an error of 6⁰ for gaze point 
estimation, we designed a calibration routine 
which uses the gaze vector data from Open-
Face and maps user’s eye movements to 
screen blocks, instead of screen pixels. We 
have divided the screen into 9 blocks of equal 
area. We designed a smooth pursuit based 
calibration routine where a marker traverse 
across all these 9 blocks and user was asked to 
follow the marker’s movement. The correspond-
ing gaze vectors from OpenFace were recorded 
and stored with the respective block number as 
the label. Once the marker completes its path, a 
neural network is trained to map these gaze 
vectors to 9 blocks of the screen. For this clas-
sification task, we used a 2 hidden layer net-
work with 256 and 128 neurons respectively 
with cross-entropy loss function and with Adam 
optimizer. We used the 70% of the data we 
recorded during calibration for training, 15% for 
validation and the rest for testing. On a i7 pro-
cessor computer, we observed that each epoch 
takes around 0.8 seconds and we trained the 
network till the test accuracy reaches 90%.  
 

 
Figure 3. Screenshot from OpenFace Face Tracker 

User Study 
We undertook the following user study to com-
pare different eye tracker implementations in 
different lighting conditions and compared them 
with a COTS screen mounted eye gaze tracker.  

Participants: We collected data from 9 partici-
pants (8 male, 1 female). All participants were 
recruited from our university. They do not have 
any visual or motor impairment. 

Material:  The user trial was conducted on a 
Microsoft surface pro tablet powered by dual-
core processor and it comes with 8 GB RAM 
and running Microsoft Windows 10 operating 
system. The surface has a 5 MP camera, which 
was used to estimate gaze direction.   

Design: We wanted to use the eye tracker to 
operate a graphical user interface with limited 
number of screen elements, hence instead of 
traditional precision and accuracy measure-
ment, we calculated the pointing and selection 
times for a set of fixed positions in screen. 

We created a user application in which we di-
vided the screen into nine blocks and one of the 
blocks gets randomly highlighted with blue col-
our as shown in figure 4a. If the user clicks on 
the blue block, it turns green as shown in figure 
4b and a different block was highlighted. If the 
user is unable to click on the highlighted block 
within 10 seconds, it turns randomly some other 
block to blue. Using this interface, we calculat-
ed the response time by measuring the time 
difference between appearance of a highlighted 
block and its selection. Users selected target 
using the left mouse button. 

The trial was performed twice - once in labora-
tory with lux meter reading 180-200 lux and the 
other in outdoor condition with lux meter read-
ing between 1800-3000 lux. 

The trial consisted of four eye tracking imple-
mentations 

 HoG based bespoke webcam based gaze 
tracker 

 Webgazer.js based webcam based gaze 
tracker 
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 OpenFace based intelligent webcam based 
gaze tracker 

 Tobii PCeye mini eye-gaze tracker (referred 
hereafter as COTS tracker) 

 
Figure 4. Pointing Task application 

For all trial conditions, we conducted trial on the 
same user application discussed before. The 
order of conditions was randomized to minimize 
practice or learning effect. Each participant 
undertook all trial conditions. 

Results: We recorded 322 pointing tasks inside 
room and 270 pointing tasks outside. We 
measured the time difference between onset of 
a target and its correct selection. We removed 
outliers by identifying points greater than outer 
fence. We removed only one point from the 
selection times recorded from the bespoke eye 
gaze tracker while 12 data points were found 
values higher than outer fence for the COTS 
eye gaze tracker. 

Figure 5 presents the average selection times 
and standard deviation. Participants took lowest 
time to select target using the COTS tracker. 
We undertook a 2 × 2 unbalance factorial re-
gression based ANOVA (type of eye gaze 
trackers × lighting conditions) on the response 
times. 

 
Figure 5. Comparing Average Response Time 

among different eye trackers 

We found  

 significant main effect of type of eye gaze 
tracker F(3,567)=15.44, p<0.01 

 significant main effect of lighting condition 
F(1,567)=4.05, p<0.05 

 significant interaction effect of type of eye 
gaze tracker and lighting condition 
F(3,574)=3.45, p<0.05 

Then we undertook two one-way ANOVAs for 
each lighting condition and found significant 
main effect of eye gaze tracker implementa-
tions. 

 Inside room F(3,318)=8.43, p<0.01 
 Outside room F(3,266)=11.31, p<0.01 

Finally, a pair of unequal variance t-tests did not 
find any significant difference between COTS 
tracker and our intelligent eye gaze tracker 
implementation inside room at p<0.05 although 
the difference in response times between the 
intelligent system and COTS tracker was signif-
icant at outside condition at p<0.05. 

Discussion: Our initial approach for eye gaze 
estimation used feature based approach. We 
used a method that extracts Histogram of Ori-
ented Gradients (HoG) features combined with 
a linear SVM to detect eye landmarks. These 
landmarks were used to compute Eye Aspect 
Ratio (EAR) feature to estimate the gaze block 
on the screen. Even though HoG based land-
mark detection had been used earlier widely, 
we observed that it occasionally failed to detect 
landmarks of our users and affected the gaze 
estimation accuracy. Variations in illumination 
and appearance of facial features like beard or 
spectacles could affect tracking accuracy based 
on pre-selected facial features.  

The second approach, Webgazer.js proposes 
to map the pixel data of eye images directly to 
gaze locations rather than to rely on handcraft-
ed features from eye images. They used a 6 x 
10 eye image patch for each eye and converted 
them to 120-dimensional feature vector. This 
vector is used as an input for a regression 
model to map to gaze points on screen. This 
approach also relies on multiple eye landmark 
detection algorithms which suffers similar limita-
tions as HoG based algorithms. Further, this 
approach requires users to click at least 40-50 
locations on screen for calibration purpose be-
fore it can make predictions which requires 
significant time. 

OpenFace uses a state-of-the-art deep learning 
approach for landmark detection and gaze es-
timation. It uses Constrained Local Neural Field 
(CLNF) for eye landmark detection and track-
ing. Unlike HoG and Linear SVM approach, 
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which was based on handcrafted features and 
trained on a relatively smaller dataset, Open-
Face uses larger dataset and deep learning 
approach to learn the estimation of 3D gaze 
vector from the eye images. Even though 
OpenFace is not very accurate in predicting 
gaze points on screen, it does not suffer from 
illumination and appearance to detect eye 
landmarks. Further, OpenFace was implement-
ed in C++ which makes real-time gaze estima-
tion possible even on CPUs. In addition to 
these, the reported state-of-the-art cross-
validation accuracy prompted us to test for a 
gaze block detection application.  

It may be noted that the response times were 
lowest for the COTS tracker compared to 
webcam-based approaches. The COTS tracker 
used on board ASIC chip to run image pro-
cessing algorithms, which has lower latency 
than general purpose processor used in 
webcam-based eye trackers [5]. It may be not-
ed that still the difference in response times 
was not significant inside room between COTS 
and intelligent tracker. Our future work is inves-
tigating to further reduce the latency and make 
eye tracking work in bright lighting condition. 

5. Conclusions 
This paper presents a case study of testing and 
development of bespoke eye gaze tracker for 
operating Head Down Displays in an aircraft 
cockpit. Our study showed that present COTS 
eye gaze trackers are not yet ready to be inte-
grated to combat aircraft in terms of tracking 
eye gaze at different lighting conditions and 
vertical field of view. We presented a set of 
algorithms that can be configured for operating 
multi-function displays inside cockpit and a 
particular intelligent algorithm using the Open-
Face framework worked better than classical 
computer vision based algorithms. 
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