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Abstract  
The 4th-order Kalman filter (KF) algorithm is implemented in the wireless sensor node to estimate the 
temperatures of the stator winding, the rotor cage and the stator core in the induction machine. Three 
separate wireless sensor nodes are used to acquire and preprocess the input signals. The hall 
sensors are used to acquire the three-phase stator currents and voltages of the induction machine. All 
of them are processed to Root-Mean-Square (RMS) in ampere and volt. A rotary encoder is mounted 
for the rotor speed and PT1000 is used for the temperature of the coolant air. The processed signals 
in the physical unit are transmitted wirelessly to the host wireless sensor node, where the KF is 
implemented with fixed-point arithmetic in Contiki OS. Compared to the floating-point implementation, 
the fixed-point implementation has the same estimation accuracy of 97% at only about one-fifth of 
computation time. Temperatures of the machine could be monitored by an App on a smart phone with 
internet. 
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1 Introduction 
Electrical machines are widely used in the 
industry, especially the increasing interest in 
electric and hybrid electric vehicles. The 
thermal behavior of an induction machine 
largely determines the maximum lifetime, the 
ability of over-load and also the accuracy in a 
high-performance controller [1]. Meanwhile the 
wireless sensor networks (WSN) have many 
applications such as industry, environment 
monitoring, tracking of things and internet of 
things. A number of methods for temperature 
monitoring of induction machines can be found 
in literature. Some of the methods do not 
provide satisfying results or can only estimate 
the temperatures of stator winding and rotor 
cage without stator core [2]. Other methods 
require powerful computation which can  be run 
on a resource limited node. All in all, none of 
them has been implemented on WSN so far.  

We focus on the algorithm implementation on 
the wireless sensor network. The input signals 
are pre-processed in distributed wireless sensor 
nodes and transmitted to the host node, where 
the algorithm is implemented. In this article, 
section 2 gives a description of the system. The 
implementation of WTIM (wireless transducer 
interface module) and NCAP (network capable 
application processor) [3] are shown in section 
3 and 4. The sequence of the network is 

described in section 5. Experiment results are 
discussed in section 6 and the conclusions 
follow in section 7. 

2 The Proposed System Description 
The state-space equations of the system are 
defined based on the thermal model [4]: 

  (1) 

  (2) 

  

          (3) 

where subscript  indicates the stator winding, 
 for the rotor cage,  for the stator core and  

for the coolant air.  is the temperature above 
ambient,  is the thermal resistance,  is the 
thermal capacitance and  is the power loss of 
the machine. The losses  can be 
calculated from the three-phase currents, 
voltages and rotor speed. The 4th-order KF 
algorithm has been implemented in the sensor 
node. The state vector is  
and the control vector is . It 
has been proved that the temperatures can be 
estimated quite accurately both in simulation 
and in test bench. The detailed description of 
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the system and the KF algorithm can be found 
in the article [5]. 

2.1 Target System 
The platform is the wireless sensor node 
Preon32 produced by Virtenio GmbH. It 
contains a 32-bit ARM Cortex-M3 micro-
controller with 256kB flash memory for 
programming and 64kB RAM memory for data. 
A 2.4 GHz wireless transceiver, which is 
compliant to the IEEE 802.15.4 standard, can 
for example be used for ZigBee or 6LoWPAN 
communication. Two 12-bit analog-to-digital 
converters (ADC) with a maximum sampling 
rate of 1M samples/s are provided [6]. Its 
sampling period is derived from the CPU-clock 
and can be set with a resolution of 1  [7]. 

2.2 Structure and Topology of the System 
Fig. 1 shows the structure of the temperature 
estimation system on WSN. Three Preon32 
nodes are implemented as the WTIMs to 
acquire current, voltage, coolant air 
temperature and rotor speed. Another node is 
implemented as the NCAP to receive the data 
from different WTIMs and to process the KF 
algorithm for temperature estimation.  

 
Fig. 1. Structure of the wireless sensor system. 

3 Implementation of the Data Acquisition 
System in Distributed WTIMs 
The data acquisition system (DAQ) is 
implemented based on the MSTL (MDT Smart 
Transducer Llibrary) which provides a universal 
interface to a variety of transducers and the 
implementation follows the IEEE1451 family of 
standards in many places. The startTrigger and 
startStream commands are broadcasted from 
NCAP to trigger the WTIMs simultaneously [8].  

3.1 Analog Sensor Data Acquisition 
Hall sensors are mounted on the conditioning 
board with low-pass filters to process analog 
three-phase currents and voltages [9]. A finite 
impulse response (FIR) filter with fixed-point 
arithmetic is implemented in the WTIMs for 
digital filtering. The sampling rate is 2000 Hz. 
The RMS of currents and voltages are 
calculated from a block of instantaneous value 

every 1 s. The mean value of the coolant air 
temperature  is calculated every 1 s from the 
sampled and filtered block, with a rate of 100 
Hz and a block size of 10 samples/block. The 
correction coefficients of the sensors are stored 
in TEDS (Transducer Electronic Data Sheet) 
[3], making it possible to transfer the values to 
SI-units before transmission.   

As data is acquired, filtered and transmitted 
continuously, the calculation time of the filter 
must be considered. In order to the data being 
processed and transmitted continuously, buffers 
are allocated using MEMB memory block 
allocators for the acquired data [10]. On the 
other hand, the computation time of the filter 
should be shorter than the acquisition time for 
one filtered block. The detailed signal 
processing time division is shown in Fig. 2: 

tsampling tsampling
t

t1 t2

tblock

tacquire tfilter tsend
t

Fig. 2. Detailed processing time division. 

The total acquisition and conversion time for 
one block (sampling time  is 50  with 8 
channels and 16 repetition counts, totally 128 
samples/block) is  
The total filtering and sending time is 

  As a result, the analog data 
acquisition system can process and transmit 
the data periodically. 

3.2 Digital Sensor Data Acquisition 
A rotary encoder (ROD 426B-6000) is mounted 
to the end of the machine shaft and connected 
to a conditioning board. A WTIM node is used 
to transfer the counts of pulse into the real rotor 
speed in rpm using etimer of Contiki.  

t

 

tsampling 

NLine counts = 6000

Fig. 3. The diagram of the generated pulses. 

The formula to calculate the rotation speed in 
rpm from the pulses can be defined in equation 
4, where  is the time between two neighboring 
pulses,  is the number of encoder 
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lines per revolution,  is the time period 
in one session, which is 12 degrees for the 
encoder. 

   (4) 

3.3 Implemented Processes in WTIMs 
The general structure of the implemented WTIM 
is shown in Fig. 4. The IEEE1451.5 process is 
used to manage the radio module and to handle 
the communication of the WSN. The 
IEEE1451.0 process is used to both manage 
the TEDS information and sample data of the 
sensors. Both rotation sensor and analog 
sensor acquisition systems are implemented. 
The values in SI units are sent back to the 
IEEE1451.0 process periodically as soon as the 
WTIM receives startTrigger or startStream 
commands. 

IEEE1451.5 Process

IEEE1451.0 Process

Sensor
Type

Analog
Sensor

Rotation
Sensor

rotation_sensor_pro
cess()

analog_sensor_conti
nuous_process()

analog_sensor_filteri
ng_process()

Rotation
Sensor

Analog
Sensor

TYPE= R TYPE= A

Speed
Current_RMS
Voltage_RMS
Temperature

notifyMsg / notifyRsp

Decoding

 
Fig. 4. The structure of implemented WTIMs. 

4 Implementation of the Kalman Filter 
Algorithm in NCAP 
This section provides the implementation of the 
KF algorithm based on the IEEE1451 standard 
in NCAP. The minimum implementation of the 
IEEE1451 standard has been integrated both in 
WTIM and NCAP. Sensors and actuators which 
are connected to WTIM can be managed by 
wireless commands from the NCAP. In our 
application, the KF algorithm is integrated in the 
NCAP to estimate the temperatures of stator 
windings, the rotor cage and the stator core of 
an induction machine. The Preon32 sensor 
node is resource restricted in respect to low-
costs, weak power calculation and small 
memory size. In order to be implemented in the 
NCAP, the algorithm should be simple and 
efficient. 

4.1 The Implementation of Processes in 
NCAP 
Contiki OS is an event-driven system which is 
managed by protothreads. In order to operate 
different WTIMs, to manage the message 
transmission and to process the KF algorithm, 
several functional processes are implemented 
in the NCAP. The structures of the implemented 
processes are shown in Fig. 5:  

IEEE1451.5 Process

IEEE1451.0 Process

KF-Algo
Process

TIMDiscovery
Process

Serial- 
Shell-

Process

Data buffer

TEDS

Application Process

KF-Start Process

NCAP

USB

 
Fig. 5. The structure of implemented NCAP. 

The Serial-Shell process was implemented for 
connecting the WSN to an arbitrary network. A 
PC connected to the NCAP works as a server 
of the network. Users can manage the WSN by 
using a web-based application or an App on a 
smart phone. TIMDiscovery process is used 
first for discovering WTIMs before every 
command from the application process. The 
KF-Start process is used for configuring and 
initiating. The IEEE1451.5 process is 
implemented to manage the radio module and 
handle the data wireless transmission. The 
IEEE1451.0 process represents the interlayer 
between the IEEE1451.5 process and the KF-
Start process. The buffer for storing data from 
different TIMs is allocated in this process. The 
received   will be passed to the 
KF-Algo process for the temperature estimation 
and the results will be sent out through the 
Serial-Shell process. 

4.2 KF Algorithm Implementation in the 
NCAP Using Fixed-Point Arithmetic 
The KF algorithm for temperature estimation 
was first implemented in MATLAB. It was 
proved both in simulation and off-line 
experiments on a test bench that the 
temperatures can be accurately estimated. In 
order to implement the KF algorithm on the 
resource restricted sensor node, the same 
algorithm was implemented in the C 
programming language using floating point 
arithmetic on the Eclipse IDE platform. The 
workflow of the KF-Algorithm process is shown 
in Fig. 6 which can be summarized as follows: 
when kf_process starts, the system will retrieve 
and decode the messages from the 
messages_buffer where different messages 
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from different WTIMs are stored. The function 
kf_data_gen() is then called to calculate the 
losses from the rotor speed, the 
preprocessed RMS of currents and voltages, 
and generate the inputs with , which are 
stored in the structure kf_data{}. Input data are 
passed to the run_kf() function where the main 
kalman filter process is performed. The DSP 
library is used for the fixed point matrix 
calculation. The state vector  and error 
covariance matrix  are stored in the structure 
kf_filter{} and sent back to the next recursion. 
The estimated temperatures  are 
sent out for storage and display.  is sent 
back to calculate the losses of the stator 
winding so that the resistance rising due to 
temperature can be compensated. 

messages
_buffer

kf_data_gen ()

run_kf (){
  matrix_init()
  kf_filter_predict()
  kf_filter_update()
  kf_filter_state()
}

kf_process 
start

struct kf_filter {}

struct kf_data {}

Tsw

shell_process

Tsw, Trc, Tsc

Psw, Prc, Psc, Tc

X, 
P

 
Fig. 6. The workflow of the KF algorithm process.  

Compared to the implementation in MATLAB 
and Eclipse in C language, implementation on 
the Preon32 sensor node using Contiki OS 
creates several challenges.  

Firstly, the methods to allocate and free 
memory space are different between the 
standard C library and Contiki OS. The 
standard C library allocates heap memory using 
the malloc() function. However, the Contiki 
platform specifies a small area of its memory 
space for the heap because of the resource 
restriction [9]. If the malloc() function were used 
for memory allocation, the heap could easily be 
overflowed. The MEMB memory block allocator 
is used to allocate a block of static memory to 
struct kf_data{}, which contains  as 
the input for the algorithm, and another to struct 
kf_filter{}, which holds all the variables and 
matrixes which are used during the prediction 
stage and update stage of the KF algorithm. 

The second challenge is that the preon32 does 
not have a floating point unit. It was clear that 
the floating point implementation cannot run on-

line. As a result, fixed-point arithmetic is used 
for the implementation. In order to transfer the 
existing KF algorithm from floating point to fixed 
point representation, the proper Q-format 
(Qm.n) defined in [11] has to be considered 
first. Both the range and the resolution of the 
data are the key factors for choosing the type of 
Q-format. The system can avoid computation 
overflow by the saturation modes provided by 
CPUs, or by designing the arithmetic 
operations. The number of overflow checks was 
minimized by the division of the variables by 
1000, which scaled all the variables and 
auxiliaries to [-1, ]. By checking the 
computation in MATLAB step by step, the 
minimum value of a number is , which 
is larger than the Q0.31 format resolution. The 
data range and the resolution of variables are 
listed below in Tab. 1: 
Tab. 1: The data range and the resolution of the 
variables. 

Variable 

/1000 

Max Min Resolution 

Input 0.2303 -0.0006  

Output 0.4995 -0.1884  

Thus the Q0.31 format was used for the 
arithmetic with a resolution of  and a range 
of [-1, 0.999999999534]. This means that one 
bit is used to represent the sign 
complement, no bits represent the integer 
portion and the remaining 31 represent the 
fractional part of the number [11]. 

The third challenge is that the ARM Cortex-M3 
processor provides the CMSIS DSP library, 
which contains matrix functions in fixed point 
[12]. The usage of specific matrix operation 
functions is listed in Tab. 2: 
Tab. 2: The matrix operations function.  

Functions Description 

arm_mat_init_q31 matrix initialization 

arm_mat_add_q31 matrix addition 

arm_mat_sub_q31 matrix subtraction 

arm_mat_mult_q31 matrix multiplication 

arm_mat_trans_q31 matrix transpose 

mat_inv_q31 Matrix inverse 

4.3 Memory Usage and Calculation Time 
In the implementation of the KF algorithm in 
NCAP, all the memory blocks are allocated 
statically so that fragmentation can be avoided 
[4]. By using it this way, it is easy to analyze the 
memory (both RAM and Flash) usage. The 
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usage of RAM on the NCAP sensor node is 
shown in Fig. 7. The buffers of the KF algorithm 
take up about 24% of the total memory space.  
The basic system, which consists of the Contiki 
OS, the firmware provided by Virtenio, and 
other parts from the standard C library, 
consumes about 32%. The MSTL library takes 
up 7.4%. About 37% of the space is unused. 

The usage of the flash memory for 
programming on the NCAP is shown in Fig. 8. 
Only about 5% of the memory is used for the 
KF algorithm and the MSTL library. The system 
takes up most of the used memory. The rest of 
about 62% of the total memory is not used.   

14.3%

KF algorithm
15.3 kB

Contiki
7.6 kB

Firmware
9.2 kB

Unused
23.4 kB

MSTL
4.7 kB

Device
0.4 kB

Others
3.4 kB

 
Fig. 7. The usage of the RAM on the NCAP sensor 
node (total memory: 64 kB). 

KF algorithm
4.9 kB

Contiki
31.5 kB

Firmware
16.1 kB

Unused
173.8 kB

MSTL
7.9 kB

Device
5.4 kB

Others
16.4 kB

 
Fig. 8. The usage of flash memory on the NCAP 
sensor node (total memory: 256 kB). 

The system gets the data from different buffers 
to generate the input, which costs 120  and 
the computation time of the KF algorithm for 
one step is about 600 . The total time of data 
generation and KF computation is much shorter 
than the calculation interval 1 s. 

5 The Sequence of the WSN System 
The sequence on the NCAP side is shown in 
Fig. 9. The TIMDiscovery command is first used 
to discover the available WTIMs in the network. 
After calling the start_KF function, the message 
is passed from the IEEE1451.0 layer to the 
IEEE1451.5 layer and then broadcasted to the 
WTIMs. Acquired data from different WTIMs is 
sent back to the NCAP and processed by the 
KF. Finally the temperatures are estimated. 

NCAP
IEEE1451.0

NCAP
KF algorithm

NCAP
App

NCAP
IEEE1451.5 WTIM

TIMDiscovery

WTIM_IDs

start_KF
WriteMsg

6LoWPAN

notifyRsp

KF algorithm
estimated

temperatures

DAQ

6LoWPAN

error_code
WriteMsg:return Request

Response

notifyRsp:return
readRsp

readRsp:return

Fig. 9. The sequence on the NCAP side. 

The sequence on the WTIM side is shown in 
Fig. 10. The startStream command is decoded 
for continuous data acquisition. The filtered and 
pre-processed data is sent back to the NCAP 
for the KF algorithm. 

WTIM
IEEE1451.5

WTIM
IEEE1451.0NCAP WTIM

DAQ

Request notifyMsg

startStream

data streaming

Response

6LoWPAN

6LoWPAN

WriteRsp

notifyMsg:return

readMsg

readMsg:return

WriteRsp:return

Fig. 10. The sequence on the WTIM side. 

6 Experiments 
Two experiments were performed on the test 
bench (Siemens machine: 1 LA5107-4AA20) 
using the WSN temperature estimation system. 
Fig. 11 shows the continuous full-load test S1 
and Fig. 12 shows the intermittent-load S6 (6 
minutes no load followed by 4 minutes full 
load). All the temperatures were estimated 
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accurately under S1 and S6 with a maximum 
error of 2 K, with the accuracy of 97%, except 
for the rotor cage temperature error of 3.8 K 
under S6. It s due to the installation of PT1000 
on the rotor cage, which influences the flux 
density and generates excessive losses (about 
55 w) compared to a healthy machine [13].  

 
Fig. 11. Comparison of measured and estimated 
temperatures under S1. 

 
Fig. 12. Comparison of measured and estimated 
temperatures under S6. 

7 Conclusions  
This paper describes the implementation of the 
temperature estimation system of induction 
machines on a WSN. The 4th-order KF with 
fixed-point arithmetic was implemented in 
NCAP. Three WTIMs were implemented as the 
data acquisition systems. Compared to the 
floating point implementation, the fixed point 
had the same estimation accuracy at only about 
one-fifth of computation time. The KF algorithm 
is independent from the control strategy and the 
running conditions. That means no matter what 
the rotor speed is, and what the mechanical 
load is, as long as there are currents through 
the stator winding, the temperature can be 
estimated correctly. The experiments prove that 
the KF implementation is suitable for real-time 

temperature estimation on a resource limited 
wireless sensor node. 
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