

Y. Huang1, C. Gühmann2

1,2 TU Berlin, Chair of Electronic Measurement and Diagnostic Technology, Sekr. EN13,
Einsteinufer 17, D-10589 Berlin, Germany

1yi.huang@campus.tu-berlin.de, 2clemens.guehmann@tu-berlin.de

Abstract
The 4th-order Kalman filter (KF) algorithm is implemented in the wireless sensor node to estimate the
temperatures of the stator winding, the rotor cage and the stator core in the induction machine. Three
separate wireless sensor nodes are used to acquire and preprocess the input signals. The hall
sensors are used to acquire the three-phase stator currents and voltages of the induction machine. All
of them are processed to Root-Mean-Square (RMS) in ampere and volt. A rotary encoder is mounted
for the rotor speed and PT1000 is used for the temperature of the coolant air. The processed signals
in the physical unit are transmitted wirelessly to the host wireless sensor node, where the KF is
implemented with fixed-point arithmetic in Contiki OS. Compared to the floating-point implementation,
the fixed-point implementation has the same estimation accuracy of 97% at only about one-fifth of
computation time. Temperatures of the machine could be monitored by an App on a smart phone with
internet.

Key words: temperature estimation, induction machine, wireless sensor networks, fixed-point, Contiki

1 Introduction
Electrical machines are widely used in the
industry, especially the increasing interest in
electric and hybrid electric vehicles. The
thermal behavior of an induction machine
largely determines the maximum lifetime, the
ability of over-load and also the accuracy in a
high-performance controller [1]. Meanwhile the
wireless sensor networks (WSN) have many
applications such as industry, environment
monitoring, tracking of things and internet of
things. A number of methods for temperature
monitoring of induction machines can be found
in literature. Some of the methods do not
provide satisfying results or can only estimate
the temperatures of stator winding and rotor
cage without stator core [2]. Other methods
require powerful computation which can be run
on a resource limited node. All in all, none of
them has been implemented on WSN so far.

We focus on the algorithm implementation on
the wireless sensor network. The input signals
are pre-processed in distributed wireless sensor
nodes and transmitted to the host node, where
the algorithm is implemented. In this article,
section 2 gives a description of the system. The
implementation of WTIM (wireless transducer
interface module) and NCAP (network capable
application processor) [3] are shown in section
3 and 4. The sequence of the network is

described in section 5. Experiment results are
discussed in section 6 and the conclusions
follow in section 7.

2 The Proposed System Description
The state-space equations of the system are
defined based on the thermal model [4]:

 (1)

 (2)

 (3)

where subscript indicates the stator winding,
 for the rotor cage, for the stator core and

for the coolant air. is the temperature above
ambient, is the thermal resistance, is the
thermal capacitance and is the power loss of
the machine. The losses can be
calculated from the three-phase currents,
voltages and rotor speed. The 4th-order KF
algorithm has been implemented in the sensor
node. The state vector is
and the control vector is . It
has been proved that the temperatures can be
estimated quite accurately both in simulation
and in test bench. The detailed description of

	 AMA Conferences 2017 – SENSOR 2017 and IRS2 2017	 139

DOI 10.5162/sensor2017/A8.2

the system and the KF algorithm can be found
in the article [5].

2.1 Target System
The platform is the wireless sensor node
Preon32 produced by Virtenio GmbH. It
contains a 32-bit ARM Cortex-M3 micro-
controller with 256kB flash memory for
programming and 64kB RAM memory for data.
A 2.4 GHz wireless transceiver, which is
compliant to the IEEE 802.15.4 standard, can
for example be used for ZigBee or 6LoWPAN
communication. Two 12-bit analog-to-digital
converters (ADC) with a maximum sampling
rate of 1M samples/s are provided [6]. Its
sampling period is derived from the CPU-clock
and can be set with a resolution of 1 [7].

2.2 Structure and Topology of the System
Fig. 1 shows the structure of the temperature
estimation system on WSN. Three Preon32
nodes are implemented as the WTIMs to
acquire current, voltage, coolant air
temperature and rotor speed. Another node is
implemented as the NCAP to receive the data
from different WTIMs and to process the KF
algorithm for temperature estimation.

Fig. 1. Structure of the wireless sensor system.

3 Implementation of the Data Acquisition
System in Distributed WTIMs
The data acquisition system (DAQ) is
implemented based on the MSTL (MDT Smart
Transducer Llibrary) which provides a universal
interface to a variety of transducers and the
implementation follows the IEEE1451 family of
standards in many places. The startTrigger and
startStream commands are broadcasted from
NCAP to trigger the WTIMs simultaneously [8].

3.1 Analog Sensor Data Acquisition
Hall sensors are mounted on the conditioning
board with low-pass filters to process analog
three-phase currents and voltages [9]. A finite
impulse response (FIR) filter with fixed-point
arithmetic is implemented in the WTIMs for
digital filtering. The sampling rate is 2000 Hz.
The RMS of currents and voltages are
calculated from a block of instantaneous value

every 1 s. The mean value of the coolant air
temperature is calculated every 1 s from the
sampled and filtered block, with a rate of 100
Hz and a block size of 10 samples/block. The
correction coefficients of the sensors are stored
in TEDS (Transducer Electronic Data Sheet)
[3], making it possible to transfer the values to
SI-units before transmission.

As data is acquired, filtered and transmitted
continuously, the calculation time of the filter
must be considered. In order to the data being
processed and transmitted continuously, buffers
are allocated using MEMB memory block
allocators for the acquired data [10]. On the
other hand, the computation time of the filter
should be shorter than the acquisition time for
one filtered block. The detailed signal
processing time division is shown in Fig. 2:

tsampling tsampling
t

t1 t2

tblock

tacquire tfilter tsend
t

Fig. 2. Detailed processing time division.

The total acquisition and conversion time for
one block (sampling time is 50 with 8
channels and 16 repetition counts, totally 128
samples/block) is
The total filtering and sending time is

 As a result, the analog data
acquisition system can process and transmit
the data periodically.

3.2 Digital Sensor Data Acquisition
A rotary encoder (ROD 426B-6000) is mounted
to the end of the machine shaft and connected
to a conditioning board. A WTIM node is used
to transfer the counts of pulse into the real rotor
speed in rpm using etimer of Contiki.

t

tsampling

NLine counts = 6000

Fig. 3. The diagram of the generated pulses.

The formula to calculate the rotation speed in
rpm from the pulses can be defined in equation
4, where is the time between two neighboring
pulses, is the number of encoder

	 AMA Conferences 2017 – SENSOR 2017 and IRS2 2017	 140

DOI 10.5162/sensor2017/A8.2

lines per revolution, is the time period
in one session, which is 12 degrees for the
encoder.

 (4)

3.3 Implemented Processes in WTIMs
The general structure of the implemented WTIM
is shown in Fig. 4. The IEEE1451.5 process is
used to manage the radio module and to handle
the communication of the WSN. The
IEEE1451.0 process is used to both manage
the TEDS information and sample data of the
sensors. Both rotation sensor and analog
sensor acquisition systems are implemented.
The values in SI units are sent back to the
IEEE1451.0 process periodically as soon as the
WTIM receives startTrigger or startStream
commands.

IEEE1451.5 Process

IEEE1451.0 Process

Sensor
Type

Analog
Sensor

Rotation
Sensor

rotation_sensor_pro
cess()

analog_sensor_conti
nuous_process()

analog_sensor_filteri
ng_process()

Rotation
Sensor

Analog
Sensor

TYPE= R TYPE= A

Speed
Current_RMS
Voltage_RMS
Temperature

notifyMsg / notifyRsp

Decoding

Fig. 4. The structure of implemented WTIMs.

4 Implementation of the Kalman Filter
Algorithm in NCAP
This section provides the implementation of the
KF algorithm based on the IEEE1451 standard
in NCAP. The minimum implementation of the
IEEE1451 standard has been integrated both in
WTIM and NCAP. Sensors and actuators which
are connected to WTIM can be managed by
wireless commands from the NCAP. In our
application, the KF algorithm is integrated in the
NCAP to estimate the temperatures of stator
windings, the rotor cage and the stator core of
an induction machine. The Preon32 sensor
node is resource restricted in respect to low-
costs, weak power calculation and small
memory size. In order to be implemented in the
NCAP, the algorithm should be simple and
efficient.

4.1 The Implementation of Processes in
NCAP
Contiki OS is an event-driven system which is
managed by protothreads. In order to operate
different WTIMs, to manage the message
transmission and to process the KF algorithm,
several functional processes are implemented
in the NCAP. The structures of the implemented
processes are shown in Fig. 5:

IEEE1451.5 Process

IEEE1451.0 Process

KF-Algo
Process

TIMDiscovery
Process

Serial-
Shell-

Process

Data buffer

TEDS

Application Process

KF-Start Process

NCAP

USB

Fig. 5. The structure of implemented NCAP.

The Serial-Shell process was implemented for
connecting the WSN to an arbitrary network. A
PC connected to the NCAP works as a server
of the network. Users can manage the WSN by
using a web-based application or an App on a
smart phone. TIMDiscovery process is used
first for discovering WTIMs before every
command from the application process. The
KF-Start process is used for configuring and
initiating. The IEEE1451.5 process is
implemented to manage the radio module and
handle the data wireless transmission. The
IEEE1451.0 process represents the interlayer
between the IEEE1451.5 process and the KF-
Start process. The buffer for storing data from
different TIMs is allocated in this process. The
received will be passed to the
KF-Algo process for the temperature estimation
and the results will be sent out through the
Serial-Shell process.

4.2 KF Algorithm Implementation in the
NCAP Using Fixed-Point Arithmetic
The KF algorithm for temperature estimation
was first implemented in MATLAB. It was
proved both in simulation and off-line
experiments on a test bench that the
temperatures can be accurately estimated. In
order to implement the KF algorithm on the
resource restricted sensor node, the same
algorithm was implemented in the C
programming language using floating point
arithmetic on the Eclipse IDE platform. The
workflow of the KF-Algorithm process is shown
in Fig. 6 which can be summarized as follows:
when kf_process starts, the system will retrieve
and decode the messages from the
messages_buffer where different messages

	 AMA Conferences 2017 – SENSOR 2017 and IRS2 2017	 141

DOI 10.5162/sensor2017/A8.2

from different WTIMs are stored. The function
kf_data_gen() is then called to calculate the
losses from the rotor speed, the
preprocessed RMS of currents and voltages,
and generate the inputs with , which are
stored in the structure kf_data{}. Input data are
passed to the run_kf() function where the main
kalman filter process is performed. The DSP
library is used for the fixed point matrix
calculation. The state vector and error
covariance matrix are stored in the structure
kf_filter{} and sent back to the next recursion.
The estimated temperatures are
sent out for storage and display. is sent
back to calculate the losses of the stator
winding so that the resistance rising due to
temperature can be compensated.

messages
_buffer

kf_data_gen ()

run_kf (){
 matrix_init()
 kf_filter_predict()
 kf_filter_update()
 kf_filter_state()
}

kf_process
start

struct kf_filter {}

struct kf_data {}

Tsw

shell_process

Tsw, Trc, Tsc

Psw, Prc, Psc, Tc

X,
P

Fig. 6. The workflow of the KF algorithm process.

Compared to the implementation in MATLAB
and Eclipse in C language, implementation on
the Preon32 sensor node using Contiki OS
creates several challenges.

Firstly, the methods to allocate and free
memory space are different between the
standard C library and Contiki OS. The
standard C library allocates heap memory using
the malloc() function. However, the Contiki
platform specifies a small area of its memory
space for the heap because of the resource
restriction [9]. If the malloc() function were used
for memory allocation, the heap could easily be
overflowed. The MEMB memory block allocator
is used to allocate a block of static memory to
struct kf_data{}, which contains as
the input for the algorithm, and another to struct
kf_filter{}, which holds all the variables and
matrixes which are used during the prediction
stage and update stage of the KF algorithm.

The second challenge is that the preon32 does
not have a floating point unit. It was clear that
the floating point implementation cannot run on-

line. As a result, fixed-point arithmetic is used
for the implementation. In order to transfer the
existing KF algorithm from floating point to fixed
point representation, the proper Q-format
(Qm.n) defined in [11] has to be considered
first. Both the range and the resolution of the
data are the key factors for choosing the type of
Q-format. The system can avoid computation
overflow by the saturation modes provided by
CPUs, or by designing the arithmetic
operations. The number of overflow checks was
minimized by the division of the variables by
1000, which scaled all the variables and
auxiliaries to [-1,]. By checking the
computation in MATLAB step by step, the
minimum value of a number is , which
is larger than the Q0.31 format resolution. The
data range and the resolution of variables are
listed below in Tab. 1:
Tab. 1: The data range and the resolution of the
variables.

Variable

/1000

Max Min Resolution

Input 0.2303 -0.0006

Output 0.4995 -0.1884

Thus the Q0.31 format was used for the
arithmetic with a resolution of and a range
of [-1, 0.999999999534]. This means that one
bit is used to represent the sign
complement, no bits represent the integer
portion and the remaining 31 represent the
fractional part of the number [11].

The third challenge is that the ARM Cortex-M3
processor provides the CMSIS DSP library,
which contains matrix functions in fixed point
[12]. The usage of specific matrix operation
functions is listed in Tab. 2:
Tab. 2: The matrix operations function.

Functions Description

arm_mat_init_q31 matrix initialization

arm_mat_add_q31 matrix addition

arm_mat_sub_q31 matrix subtraction

arm_mat_mult_q31 matrix multiplication

arm_mat_trans_q31 matrix transpose

mat_inv_q31 Matrix inverse

4.3 Memory Usage and Calculation Time
In the implementation of the KF algorithm in
NCAP, all the memory blocks are allocated
statically so that fragmentation can be avoided
[4]. By using it this way, it is easy to analyze the
memory (both RAM and Flash) usage. The

	 AMA Conferences 2017 – SENSOR 2017 and IRS2 2017	 142

DOI 10.5162/sensor2017/A8.2

usage of RAM on the NCAP sensor node is
shown in Fig. 7. The buffers of the KF algorithm
take up about 24% of the total memory space.
The basic system, which consists of the Contiki
OS, the firmware provided by Virtenio, and
other parts from the standard C library,
consumes about 32%. The MSTL library takes
up 7.4%. About 37% of the space is unused.

The usage of the flash memory for
programming on the NCAP is shown in Fig. 8.
Only about 5% of the memory is used for the
KF algorithm and the MSTL library. The system
takes up most of the used memory. The rest of
about 62% of the total memory is not used.

14.3%

KF algorithm
15.3 kB

Contiki
7.6 kB

Firmware
9.2 kB

Unused
23.4 kB

MSTL
4.7 kB

Device
0.4 kB

Others
3.4 kB

Fig. 7. The usage of the RAM on the NCAP sensor
node (total memory: 64 kB).

KF algorithm
4.9 kB

Contiki
31.5 kB

Firmware
16.1 kB

Unused
173.8 kB

MSTL
7.9 kB

Device
5.4 kB

Others
16.4 kB

Fig. 8. The usage of flash memory on the NCAP
sensor node (total memory: 256 kB).

The system gets the data from different buffers
to generate the input, which costs 120 and
the computation time of the KF algorithm for
one step is about 600 . The total time of data
generation and KF computation is much shorter
than the calculation interval 1 s.

5 The Sequence of the WSN System
The sequence on the NCAP side is shown in
Fig. 9. The TIMDiscovery command is first used
to discover the available WTIMs in the network.
After calling the start_KF function, the message
is passed from the IEEE1451.0 layer to the
IEEE1451.5 layer and then broadcasted to the
WTIMs. Acquired data from different WTIMs is
sent back to the NCAP and processed by the
KF. Finally the temperatures are estimated.

NCAP
IEEE1451.0

NCAP
KF algorithm

NCAP
App

NCAP
IEEE1451.5 WTIM

TIMDiscovery

WTIM_IDs

start_KF
WriteMsg

6LoWPAN

notifyRsp

KF algorithm
estimated

temperatures

DAQ

6LoWPAN

error_code
WriteMsg:return Request

Response

notifyRsp:return
readRsp

readRsp:return

Fig. 9. The sequence on the NCAP side.

The sequence on the WTIM side is shown in
Fig. 10. The startStream command is decoded
for continuous data acquisition. The filtered and
pre-processed data is sent back to the NCAP
for the KF algorithm.

WTIM
IEEE1451.5

WTIM
IEEE1451.0NCAP WTIM

DAQ

Request notifyMsg

startStream

data streaming

Response

6LoWPAN

6LoWPAN

WriteRsp

notifyMsg:return

readMsg

readMsg:return

WriteRsp:return

Fig. 10. The sequence on the WTIM side.

6 Experiments
Two experiments were performed on the test
bench (Siemens machine: 1 LA5107-4AA20)
using the WSN temperature estimation system.
Fig. 11 shows the continuous full-load test S1
and Fig. 12 shows the intermittent-load S6 (6
minutes no load followed by 4 minutes full
load). All the temperatures were estimated

	 AMA Conferences 2017 – SENSOR 2017 and IRS2 2017	 143

DOI 10.5162/sensor2017/A8.2

accurately under S1 and S6 with a maximum
error of 2 K, with the accuracy of 97%, except
for the rotor cage temperature error of 3.8 K
under S6. It s due to the installation of PT1000
on the rotor cage, which influences the flux
density and generates excessive losses (about
55 w) compared to a healthy machine [13].

Fig. 11. Comparison of measured and estimated
temperatures under S1.

Fig. 12. Comparison of measured and estimated
temperatures under S6.

7 Conclusions
This paper describes the implementation of the
temperature estimation system of induction
machines on a WSN. The 4th-order KF with
fixed-point arithmetic was implemented in
NCAP. Three WTIMs were implemented as the
data acquisition systems. Compared to the
floating point implementation, the fixed point
had the same estimation accuracy at only about
one-fifth of computation time. The KF algorithm
is independent from the control strategy and the
running conditions. That means no matter what
the rotor speed is, and what the mechanical
load is, as long as there are currents through
the stator winding, the temperature can be
estimated correctly. The experiments prove that
the KF implementation is suitable for real-time

temperature estimation on a resource limited
wireless sensor node.

References
[1] M. O. Sonnaillon, G. Bisheimer, C. D. Angelo,

Online sensorless induction
IEEE

Transactions on Energy Conversion, vol. 25, no.
2, pp. 273 280, June 2010.

[2]
stator resistance estimation of squirrel cage
induction machine with a single extended kalman

[3] IEEE standard for a smart transducer interface
for sensors and actuators common functions,
communication protocols, and transducer
electronic data sheet (teds) formats. IEEE Std
1451.0-2007, pages 1 335, Sept 2007.

[4] A. Haumer, C. Kral, V. Vukovic, A. David, C.

scheme for high performance thermal models of
electric machines using
VIENNA, 2012.

[5] Y.
Network for Temperature Estimations in an

,
15th IMEKO TC10 Workshop on Technical
Diagnostics, 2017 (accepted not published yet).

[6] Virtenio GmbH: http://www.virtenio.com/en/

[7] J. Funck and C. Guehmann. A flexible filter for
synchronous angular resampling with a wireless
sensor network . Measurement, 98:393 406,
2017.

[8] IEEE standard for a smart transducer interface
for sensors and actuators common functions,
communication protocols, and transducer
electronic data sheet (teds) formats. IEEE Std
1451.5-2007, pages C1 236, Oct 2007.

[9] Intelligenter Sensor zur
Leistungsmessung im Dreiphasennetz . Master
thesis, TU Berlin, May 2013.

[10] Contiki: https://github.com/contiki-
os/contiki/wiki/Memory-allocation

[11] A. Bock, D. Liu, J. Funck, A. Giedymin, R. Burke
C. Gühmann,
and Flux Measurements in an Axial Flux
Mac -SENSOR and
IRS2 2015.

[12] CMSIS:http://www.arm.com/products/processors/
cortex-m/cortexmicrocontroller-software-interface-
standard.php.

[13] J. F. Bangura, N. A. Demerdash, "Effects of
broken bars/end-ring connectors and airgap
eccentricities on ohmic and core losses of
induction motors in asds using a coupled finite
element-state space method", IEEE Trans.
Energy Convers., vol. 15, no. 1, pp. 40-47, Mar.
2000.

0 1000 2000 3000 4000 5000 6000 70000

50

100

Time [sec]

0 1000 2000 3000 4000 5000 6000 70000

50

100

Time [sec]

0 1000 2000 3000 4000 5000 6000 70000

50

Time [sec]

Measurement
Estimation

Measurement
Estimation

Measurement
Estimation

4000 5000 6000 7000 800065

70

75

80

Time [sec]

Measurement
Estimation

4,000 5,000 6,000 7,000 8,00060

80

100

Time [sec]

Measurement
Estimation

4000 5000 6000 7000 800050

55

60

Time [sec]

Measurement
Estimation

	 AMA Conferences 2017 – SENSOR 2017 and IRS2 2017	 144

DOI 10.5162/sensor2017/A8.2

