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Abstract:

New ultrasonic measuring techniques use information from local distribution of reflected waves gained
with arrays. As they are taking the wave behavior of sound into account, simple geometric models are
not sufficient to understand the dependence between quantities being measured directly and these
quantities being of interest, like sound velocity in media or the geometry of a specimen. To get this
understanding, sound field simulations are necessary which allow to derive evaluation algorithm and to
qualify measuring results. To reduce the calculation-effort for axial symmetric problems this contribution
presents a new approach to calculate the sound field of a ring-like source. The results are proved by
comparing them with the sound field of a disc shaped source.
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Introduction

New ultrasonic measurement techniques utilize
the wave behavior of sound instead evaluating
only amplitude and/or time of flight. So e.g. new
algorithm for synthetic aperture focusing
technique take into account the sound field of the
transducer instead of simple delay and sum [1].
In [2] the authors developed new, non-
tomographic methods for a simultaneous
measurement of sound velocity and thickness of
layered structures and for a locally resolved
measurement of sound velocity in fluids with
scattering particles. These techniques analyze
the local distribution of reflected waves to gain
additional information. This is done with
structured transducers, in [2] with annular arrays,
consisting of a circular disc as central element
and rings of the same area, see figure 1.
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Fig. 1. Example of structure of the used annular
arrays: white — active area, grey passive area.
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As the new measuring techniques are used to
analyze very complex problems, a prediction of
reflected signals, via a simulation, is necessary
to gain evaluation methods and to qualify
measurement results. Half-analytic methods are
a powerful tool to model wave propagation in
complex structures. They are based on integral
transform methods, which are used to derive
Green's functions giving the pulse response of a
point-like excitation on the interface between two
half-spaces. So in comparison to full-numerical
methods, based on finite elements, not the whole
volume but only the interfaces need to be
discretized. So the effort of memory and
computation time becomes much lower.
Especially for the simulation of ultrasonic
problems a very high discretization is required
but there are often even big volumes which has
to be taken into account.

Integral transform methods are used to reduce
multidimensional differential equations to
ordinary ones, as it is known from the mostly
widespread Fourier Transform. The transformed
equation can be solved simply by an exponential
ansatz and the integration constants are
determined by applying the boundary conditions.
So a correct analytic solution can be derived in
the transformed domain. The main issue is
performing the inverse transform. This can be
done by the Cangiard-de Hoop method as in [3]
gaining the step response in time domain or by a
steepest descent approximation gaining the field
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of a point source with directivity pattern in
frequency domain [4].

As annular arrays are used in the developed
measuring techniques, most simulated problems
are radial-symmetric. Thus modelling can be
done in two instead of three dimensions, which
would reduce the computation effort
significantly. This contribution describes the
derivation of Greens functions for ring-like
sources. It discusses why applying the steepest
descent approximation fails and how an
alternative approach using Green'’s functions of
point sources in the frequency domain can be
used to calculate the pulse response of a ring-
like source.

Derivation of Green’s Functions

Axial-symmetric problems are described by the
wave equation in cylinder coordinates (eq. 1) for
the potential ® of displacement:
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To solve this equation, the Fourier transform is
applied with respect to time and the Hankel
transform with respect to the radial coordinate r.
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where Jo is the Bessel function of first kind and
zeroth order. So an ordinary differential equation
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is gained, with the wave number k. This equation
can be solved by an exponential ansatz.

@M = Ao NE T | el (4)

To determine A and B the boundary conditions
has to be taken into account. The normal stress
for a point source is given by:
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and

ol (é)=0, (6)

in the transformed domain. For a ring-like
excitation, at the position r = a, it is given by

7. (r) =7, % @)

and can also be transformed easily:

()= oo, (ad) (8)

Additionally, stress and displacement at the
interface must be equal. For a point source,
independently if stress or displacement
components are calculated, an integral of the
form:

1= [F(Ee 1, (e )z ©

has to be solved for the inverse transform. For
the ring-like excitation the integral looks very
similar, only an additional Bessel function
appears.

1=[FE 5 (ag) (rE)eas (10)

Trying to solve this by substituting F*= F Jo(aé)
would fail immediately because this would result
in a function with an epicenter at the coordinate
origin whereas it has to be at r = a. To obtain this,
first the integral form of a Bessel function is
required:
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The multiplication of the two Bessel functions
results in a sum of four terms which can be
combined to a sum of two terms. Approximating
each term as in [4] with a linear approximation
results in the integral of eq. (12):
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Note that this equation has the epicenter at r = a,
and r = -a. Applying the steepest descent
approximation on these integrals gives:
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, with
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z z

&, = ksin(z) £ ksin(g) (14)

These formulas are implemented and the
resulting field is compared with the
corresponding one, gained by a point source
synthesis. The results are shown in figure 2.

Obviously both fields disagree. The reason is,
that the two Bessel functions had been
approximated linearly and that the resulting
deviation becomes too high. So an alternative
approach is proposed:
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Fig. 2. Comparison of calculated sound fields of a
point source at r = 3 mm: via the steepest descent
approximation for the ring (left) and via point source
synthesis (right).

Approach using transient Green’s functions
of point sources

The field of a point source gained from the
steepest descent approximation is given by

G — S((D)eij (15)
27R

, Wwhere R is the distance between source and
observation point, S is the directivity pattern,
determined by the boundary conditions and the
excitation type, ¢ is the angle between R and the
surface normal at the source point. For a source
point at Ps(a cos a, a sin a, 0) and an observation
point at Po(x, 0, z) the pressure is given in eq.
(16) and illustrated in figure 3.
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Fig. 3. View of the source and an arbitrary
observation point.

581



This can be transformed back into time domain,
where we get a Dirac function instead of the
exponential term. To calculate the field of a ring-
like source we have to integrate over a, as in eq.
(17)

v
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Due to the properties of O-distribution, this
integral can be solved: We substitute

o Vi —2xaco§(a)+ a’+2°) 18)

And obtain, with the step function H(t).
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with @ = arccos(i) (19)
ct

for x > 0 and the integration constants:
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For the pressure on the axis we obtain.
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So the special pulse response for a ring-like
excitation on an interface of two half-spaces can
be calculated in the whole volume.

Results and Discussions

To prove the derived equations, they had been
used to calculate the sound field of a disc shaped
source as in [5]. Thereby it has to be recognized
that the approach of the steepest descent
approximation separates the pressure and sheer
waves and that they have to be calculated
independently. But in [5] the pulse response is
calculated by the Cangiard-de Hoop method
what results in an term containing both wave
types. It calculates directly e.g. the normal
displacement.

The calculated signals for a disc-source of
10 mm diameter are depicted in figure 4 (blue
lines). For the pressure on the acoustic axis the
expected rectangular signal can be observed. If
the observation point is not on the axis but its
radial coordinate is lower than the radius of the
disc, a much shorter rectangular signal part with
a decaying edge can be observed. The time,
when the decay starts is the arrival-time of the
first edge wave. If the radial coordinate of the
observation point is bigger than the disc
diameter, there is no rectangular signal part. The
Figure also shows the signals which would be
emitted of a transducer with a center frequency
of 3 MHz if it is excited with a signal of 3 Periods
(red lines).
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Fig. 4. Calculated signals for a disc source of
d = 10 mm diameter for different depths (40 mm upper
row and 60 mm lower row) and for different radial
coordinates r; left: on acoustic axis, center: out of axis
r<d/2, right: r>d/m2; blue: pulse response; red
convolution with a signal of 3 periods with 3 MHz

center frequency.

To determine the necessary density of rings,
calculations are done for different densities.
Some examples are shown in figure 5. It can be
recognized that the distance of two rings may not
be larger than 1 ym.
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Fig. 5 Calculated signals for a disc source of
d = 10 mm diameter for different ring densities.

The proposed method can be used to calculate
the sound fields of annular arrays very
effectively. Therefore, pulse responses are
calculated in each observation point and are
convoluted with an arbitrary excitation pulse. For
visualization, the maximal amplitude of the
resulting signals is shown in figure 6 for an array
of 6 elements with a diameter of the outer ring of
d =12 mm. All elements have the same area
and there is no space between them. The
elements are represented by bold lines on the
X-axis.
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Fig.6  Calculated maximal amplitude of the single
elements of a 6-element-annular array, in dB
standardized to its own maximum.

The big advantage of annular arrays are their
excellent properties for focusing, as the resulting
focus has a small extension in all directions. It
can be placed between the near field length of a
single element and the near field length of the
whole transducer, driving all elements together.
To focus electronically in measurements, the
elements are driven quasi-simultaneously, which
means that there is a small delay between the
signals but this delay is usually smaller than the
length of the signal. The delay times are
calculated by determining the different path
lengths from each element to the assigned focus
position and dividing these differences by the
sound velocity of propagation medium. So each
wave arrives at the assigned point at the same
time. This can also be realized very easily in
simulations as the calculated signals can be
time-shifted and superposed. Some examples
are shown in figure 7. The upper row is for
excitation with 2 MHz and the lower row for
excitation with 4 MHz, always with a signal of 3
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periods. On the left there is no focusing so that
the resulting field has a focus outside the
observation area. In the center the fields are
shown for trying to focus at a distance of 10 mm
what succeeds for 2 MHz but fails for 4 MHz
because the nearfield length of the single
element is there already at 15 mm which makes
focusing impossible
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Fig.7  Calculated sound fields resulting from
focusing for the array of figure 6 but with excitation of
2 MHz (top) and 4 MHz (bottom) for: no focusing (left)
focusing on 10 mm (center) and 20 mm (right), in dB
standardized to its own maximum.

Summary and Conclusion

This contribution gives a new approach to
simulate the sound propagation in radial-
symmetric  structures. Therefor the pulse
response for a ring-like excitation has been
derived. This allows to discretize the interfaces
of the structures only in one dimension instead
of two, which had been necessary for the point
source synthesis. Although it neglects the waves
which are emitted from surface waves it predicts
the signals of transducers very well.

Future work will be on the optimization of the
discretization of the interface for best accuracy
at a minimal calculation time. Furthermore, the
algorithm will be extended for problems of
several layers.
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