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Introduction

Surface acoustic wave devices have become in
use for many industrial and civil applications.
Features such as passiveness, robustness, re-
liability, and remote-control make them at-
tractive for telecommunications, biotechnolo-
gies, chemical industry, etc. The operating
principle of piezoelectric surface acoustic wave
(SAW) devices lies in the transformation of an
electric input signal into an acoustic wave that
propagates over the piezoelectric substrate.
The surface wave is then transformed back to
an electric output signal. As a rule, SAW de-
vices operate at radio frequencies and have a
tiny size. The acoustic wave is generated by
a grating, which can contain up to some hun-
dreds of electrodes. The complexity of SAW
devices implies therefore their precise mod-
elling in order to meet design and operating
requirements. Here, we suggest a mathemat-
ical model for a SAW interdigital transducer
based on finite element method. The model
is intended to be used for computation of the
parameters of SAW devices for further design
and optimisation. We also concentrate on the
influence of such effects as temperature and
mechanical pre-stressing on the propagation
of SAW. Thereby, as in the majority of mod-
els for SAW devices, we deal with the struc-
tures that have a periodic pattern and thereby
turn to the model for a unit cell with peri-
odic boundary conditions. In order to reduce
computational costs, we utilise the perfectly
matched layer (PML) technique to model just
a small part of the substrate. The overall nu-

AMA Conferences 2017 — SENSOR 2017 and IRS? 2017

merical scheme has been implemented in the
finite element software CFS++ [6].

Mathematical Formulation

We consider a unit cell as displayed in Fig.
1 with a Cartesian coordinate system, where
the z-axes point to the direction of wave prop-
agation, i.e. along the grating; the y-axis is
parallel to the aperture; the z-axis is orthog-
onal to the substrate.
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Figure 1: Principle setup of a SAW unit cell.

We presume the absence of external forces
and free volume charges and a harmonic
dependence on time with the angular fre-
quency w. Thereby, the coupled system of
partial differential equations reads as

BT ([c"1Bu + [e] Vi) + w’pu = 0 (1)
V- (eu—[9]Ve) = 0(2)
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where w and ¢ act as the complex ampli-
tudes of displacement and scalar electric po-
tential. The material constants in (1), (2) are
the tensor of mechanical moduli [¢¥], the ten-
sor of electric permittivity [¢°], and the piezo-
electric coupling tensor [e] with the first two
taken at a constant electric field and a con-
stant strain, respectively. Furthermore, B de-
notes the corresponing differential operation
[6]. Within the electrodes, ¢ = 0, and there-
fore only the mechanical field is to be com-
puted form the equation (1). On the contrary,
only electric field exists in the air surrounding
the device.

We impose the following boundary condi-
tions that complement the system (1), (2):

the structure is fixed at the bottom

u =0on Ty, (3)

e other surfaces are free of stress

[o]n =0on oo, \Tb,  (4)

e the electric field is given by a harmonic
driving voltage of the amplitude V

o=V on T, (5)

e the electric potential ¢ (x) vanishes in
the air as * — oo so that, approxi-
mately,

© = 0 on some artificial boundary [',.
(6)

The boundary value problem (1)—(6) is
still incomplete, for it lacks boundary condi-
tions on I'y and I'.. To that end, we refer to
Floquet’s theorem [8]. It asserts that if ¢ (x)
is a fundamental solution of an ordinary dif-
ferential equation f, () = A(z) f (z) with a
periodic function A (z +p) = A (z), then

W (@) =y () €7 (7)

In (7)7 ¢p($+p) — 'l/Jp(fE) and epB =
¥ (p)y~1(0). Bloch has proven that sim-
ilar results are wvalid for the stationary
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Schrédinger equation with a periodic po-
tential function (Bloch’s theorem [8]) in n-
dimensional space, i.e. it has a non-trivial
solution of the form

) () = ¢y (@) 7, (8)

where v, (z) is a periodic function. Finally,
Kouchment in his work [9] extended Floquet’s
theory to the partial differential equations
of parabolic and elliptic types. By analogy
with (8), we may write

ulp, = dulp 9)
elp, = vl (10)
o]y, = —Vlo]np, (11)
Dn|p,, = —9Dnyp, . (12)

We shall refer to these equations as the Bloch-
periodic boundary conditions. Now, the weak
formulation of our coupled systems of PDEs
may be written as

/ (Dw')" [C] Dwd®
Q

/ T / T
_wz/ﬂ(w) [p]'wdﬂ—/rl (w')” Ty, dU

—/ (w')" T, dT = 0(13)

T

with
Po= (5 w) () o= (G 1)
p 000
e=1o 6y o) = (70
0 0 0O

and w’ being appropriate test functions. The
boundary conditions (9), (12) then read

wlp =19 w|Fl , Ty, =-9 T|Fl . (14)

Computational domain truncation

As mentioned in the introduction, we uti-
lize here a perfectly matched layer to trun-
cate the domain, which absorbs downward-
propagating waves, i.e. the desired absorption
in our case is performed with respect to z-
coordinate.
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Following the complex coordinate-
stretching PML formulation [11], we replace
the initial coordinate z by a stretched coordi-
nate

Zz/zs(ﬁ,w)dﬁ (15)
0

within the PML region Qpy,, such that dzZ —
s(z,w)dz. The stretching function s(z,w)
in (15) is assumed to be complex valued
within Qpwyr,; outside it is set to s (z,w) =
1, in order to keep the coordinate un-
changed (Z = 2).
According to the classical PML scheme,
the parameter s is defined in Qpyp, as follows
s(z,w)zl—i—@, o>0, (16)
iw
so as to make any downward-propagating
waves of the form e'*?, k > 0 attenuated

eikz _y ikz eg Jo o(©)de

Though such a choice is useful for propagating
waves, it can hardly make an evanescent wave
fade away faster than it does within Qpyr.
For this purpose we take a different metric

& (17)

s(zyw) =k(2)+ NOETT

where o is the same as in (16), k > 1,
and o > 0. The parameters x and « are re-
sponsible for attenuation of evanescent and
near-grazing waves, respectively [12]. The
metric (17) modifies a propagating wave, such
that

. . k iwo(€)
elkz — elk fOZ H(§)dﬁez fOZ szuﬁl;#*iw d§

The PML formulation utilizing the met-
ric (17) is referred to as a complex fre-
quency shifted PML (CFS-PML) [4]. Note,
that we come up to the classical formula-
tion setting k = 1, @« = 0. The choice of
the stretched-coordinate metrics parameters
is not obvious and is usually made experimen-
tally. This issue is, however, beyond the scope
of this paper. For details, we refer to [10].
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Periodic boundary condition han-
dling

The easiest approach is to use Mortar FE for-
mulation [6] with a Lagrange multiplier tech-
nique [7]. However, we utilize an approach
based on Nitsche’s idea to incooperate Dirich-
let boundary conditions (see [5]) and later
has been adopted by Hansbo et al. for non-
conforming grids [1]. It can also be adopted
for periodic boundary conditions [10]. In
contrast to the Lagrange multipliers method,
Nitsche’s one does not lead to a saddle point
problem. It also keeps the convergence rate of
the underlying FEM model [6]. The scheme
of Nitsche’s method goes on as follows:

e we proceed with (13) as before but re-
tain T on I'j, which yields

/ (Dw')" [C] Dwdn

Q

—uw? w)" [plw
[ @) plwae

T
_/F (w/’rl B 19“’/|1“r) Ty, dT' = 0;
1

e we add the periodic boundary condition
(allowed since Jw|p — wlp, = 0)

— /Fl (T/|F1>T (ﬁ’w|rl — w|F1-> dl = 0;

e we add the penalisation term

sl Y o= [ (wly, = ow

ET)

T
r.)

(vwlp, = wlp, ) ar =o.

Here, 3 is a constant, E (T'}) is a mesh on T,
and hg is the diameter of the element I'p €
E (T'}). The vectors T'|p, and 7", are defined
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as follows
"l|r1
T’F] < D”1|F1 )
Bu —|— ]TVgp m|F
e]Bu — [e°]Vy) "1|F1
| nl|F1
Fl D,n1|1—\1

(e TV )
(le]Bu’ — [5]V¢) mly,

For details, we refer to [10].

Waves in a unit cell

In a first example, we are interested in the
wave solutions that propagate close to the
substrate surface (i. e. pure or quasi SAW).
Therefore, the waves radiating down into the
substrate should be absorbed introducing a
perfectly matched layer and setting

on I'y. (18)

The remaining faces of the unit cell are stress
free. We choose the 42°YX cut of LiTaOg
for the substrate material. This cut, being
adjusted for the wave propagation and nor-
mal directions along the x and y-axes, re-
spectively, exhibits a leaky SAW with domi-
nant acoustic displacements normal to the zy
plane [3]. The aluminium electrode has the
rectangular parallelepiped shape with dimen-
sions w = 0.5p, h = 0.1p, and a = 4p.
The substrate dimension in the z direction b
equals 4.8p (see Fig. 3).
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Figure 3: SAW unit cell
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The results showing the distribution of the
mechanical displacement and the electric po-
tential in the unit cell at 2pf = 4000 m/s
are depicted in Figure 4. Both quantities ful-
fill the imposed anti-periodic boundary con-
ditions.
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Figure 4: Mechanical displacement and elec-
tric potential in the unit cell of 42°YX-LiTaOs3
substrate under periodic aluminium single
electrode IDT.

Lithium niobate crystal sub-
jected to longitudinal strain

Finally, we shall investigate the strain sensi-
tivity of a Y Z-cut of a lithium niobate crys-
tal glued to a stainless steel blade. The blade
is in its turn subjected to a longitudinal de-
formation. The crystal can be glued to the
blade in an arbitrary way such that the direc-
tion of SAW propagation and the deforma-
tion applied to the blade make up an angle «
(see Fig. 5). The last can obviously lie within
the range [0°,90°]. The experimental analy-
sis of this setup done at CTR AG had the
goal to study how the orientation of the crys-
tal with respect to the deformation direction
affects the propagation of SAW.
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Applied strain

Figure 5: Position of the crystal

The results of measurements are displayed
in Fig. 6 for different orientations of the crys-
tal. It is remarkable that the slope of the
sensitivity curves changes its sign from pos-
itive to negative as the angle « rises from 0°
to 90°. This ensures the existence of a
strain-insensible position which, according to
the measurements, corresponds to the angle
about 60°.
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Figure 6: Results of the measurements done
for different orientations of the crystal [2]

We make simulations considering the
smallest (I) and the largest (II) possible val-
ues of a. First, we consider the static defor-
mation of the structure caused by the longi-
tudinal strain. The Cartesian coordinate sys-
tems depicted in Fig. 5 are associated with
the blade (lower-case) and with the crystal
principal axes (upper-case). The longitudi-
nal strain therefore corresponds to S,. The
glue used to stick the crystal to the blade is
neglected during the simulations. The stress
distributions along the middle line parallel to
the SAW propagation on the crystal’s top are
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shown in Fig. 7 (a) and (b) for cases I and II
respectively. For the second step we use the
extracted values of the stress neglecting the
edge effects. Namely, the stress distribution
is taken uniform over the whole crystal with
the same value as that at the centre point of
the crystal’s top surface.
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Figure 7: Stress distributions on the crystal’s
top along the SAW propagation direction: oz
(red) and ox (blue)

The relative velocities for the setups I and
IT are

A

2~ _17533-107%
U or

A

29— 5.8444.1075.
U

The relative phase shift between the inci-
dent and the reflected signal is calculated and
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equals

S = = 7.7904 - 1074,

Ay
Cll
01— 96164107
II

M =

(0

Then we can find the ratio between the phase
shifts in cases I and II:

o
W ~ —0.336.

According to Fig. 6, the ratio between the
slopes of the red and the cyan curves, which
correspond to setups I and II, is approxi-
mately equal to —0.3. This shows that the
results obtained from the measurements and
the simulations are in a good agreement with
one another considering the assumptions we
have made during the modelling.
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