DOI 10.5162/sensor2017/D4.4

Nested-list Approach for the Stageless Evaluation of a
Vector Preisach Model based on Rotational Operators

Michael Nier/a1, Stefan J. Rupitsch1, Manfred Kaltenbacher’
" Chair of Sensor Technology, University Erlangen-Nuremberg, 91052 Erlangen, Germany,
2 Institute of Mechanics and Mechatronics, Technical University Vienna, 1060 Vienna, Austria
michael.nierla@fau.de

Abstract:

The Everett function is a widely used tool to evaluate the output of scalar Preisach hysteresis
operators. Compared to a matrix-based implementation, the Everett function does not only allow a
stageless evaluation of the switching state but, furthermore, reduces the required storage to a single
list of dominant input minima and maxima. To deal with magnetic fields that change direction over
time, a vector extension of the scalar Preisach model based on rotational operators can be utilized.
This straight-forward extension enables an efficient description of vector hysteresis phenomena. Due
to the dependency between the newly added rotational operator and the original switching operator,
neither the usage of a single list nor the direct application of the Everett function is possible. In this
contribution, we propose a nested-list data structure for the vector Preisach model based on rotational
operators. Exploiting this data structure allows the usage of an adapted Everett function and, thus, an
efficient, stageless representation of both the rotational operator as well as the switching operator.
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Introduction

In order to describe not only the effects of
saturation and hysteretic branching but also the
change of direction under rotating magnetic
fields, vector hysteresis models have been
developed. Well established approaches are
based on vectorial extensions of either the
Preisach hysteresis model [1,4,8,9] or the Jiles-
Atherton model [2,7]. A direct comparison
between scalar Preisach and Jiles-Atherton
models shown in [3], reported a slight
advantage of the Preisach model in terms of
accuracy, especially with respect to minor loops
at the cost of higher computational effort.
Typical vector extensions of the scalar Preisach
model lead to a further increase in
computational cost, e.g., by requiring the
integration of the scalar model over the whole
half-space like in case of the well-established
Mayergoyz vector hysteresis model [8,9]. To
reduce the computational effort while
maintaining a high accuracy, Sutor et. al.
developed two similar light-weight vector
extensions to the scalar Preisach model that
exploit rotational operators to describe vector
hysteresis properties [12,13]. The major
drawback of these models lies in their
implementation. Whereas scalar Preisach
models can efficiently evaluate the hysteretic
behavior using the Everett function [5,6], a less
accurate and computationally more expensive
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matrix-implementation has to be used for these
vector models. In this contribution, we present
an efficient, stageless evaluation scheme based
on a nested-list data structure that aims at
relieving the two main disadvantages of the
matrix-based approach. Thereby, we focus on
the revised vector model presented in [11]. A
similar nested-list approach was already
presented in [10] for the original model [12] but
due to significant changes in the revised model,
a separate modeling is reasonable. In the
following section, the vector Preisach model
based on rotational operators will shortly be
presented. Afterwards, the stageless evaluation
scheme and its nested-list data structure are
discussed. The forth section provides a set of
updating and deletion rules that ensures a
correct and memory saving handling of the
nested-list data structure. Section five shows a
comparison between the newly developed
stageless evaluation and the classical matrix-
based implementation. This contribution ends
with a conclusion in section six.

Vector Preisach Model based on Rotational
Operators

The vector Preisach models as proposed in
[11,12] extend the classical scalar Preisach
model by two slightly different rotational
operators. Let &(t)=E(t)/Equraion denote the
normalized input of the hysteresis operator,
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Fig.1. Left: Exemplary rotation state Xap of the vector Preisach model for k = 0.5, A¢ = 0 after an input history of
(0.0,1.0)7, (0.0,—0.5)7, (0.0, 0.4)7, (0.0,—0.3)7, (0.0, 0.2)"; Right: Corresponding switching state Rug; the
dash-dotted line displays the stair-case separation of Rqg by the values e, to e|,.; this separation affects only the
rotation state enclosed by ey, and €y, (darker area).

then its normalized output p(t) = P(tYP.aturation IS
obtained by

p(t) = ” p(a, B) Rap[€]1(t) Xa,p[E](t) dadp
a=p

Thereby, u(a, B) stands for the Preisach weight
function, Rapl&](t) for the switching operator
known from the scalar Preisach model and
XoplEI(t) for the newly added rotational
operator. a and B are the coordinates in the
triangular shaped Preisach plane

S={(a,B)eR? |a|<1,|Bl<1,B<a}.

Following the revised vector model, prt_a_sented
in [11], the rotational operator Xag[€I(t) is
defined as

o [Gnew(®)  ifey > max(lal, 1B)
X"'ﬁ[e](”‘{ao;(t) else )

dold denotes for the previous operator state. ey
is called rotational threshold and computes to

ex =klIéIl, (2)

with k being a material specific parameter. In

case of ey>max(lal, |8]), the rotational
operator changes its state to

- [dng ifZ(din, doid) > D@

dnew = {320 124 , @)

where dj, = &(ty|a)| is the direction of the
current input and dag the unit vector that is
obtained by rotating do 4 towards din leaving an
angular distance

A¢p = Ado(1—|IED) -

The value A¢q represents a second material
specific parameter. As shown in the left half of
Fig. 1, the presented setting rules for Xag[ €1(t)

AMA Conferences 2017 — SENSOR 2017 and IRS? 2017

separate the Preisach plane S into M'-shaped
areas that are bounded by the values of ey,

Besides the addition of the rotational operator
Xap[€1(t), another crucial point of the vector
Preisach model is the update rule for the
switching operator Ragl[€](t). In the original
scalar Preisach model, Rscalar,apl€e](t) is set
directly by the scalar input value e. A sequence
(e1,e2,...,em) of dominant input minima and
maxima will lead to a characteristic stair-case
splitting of S into a positive (Rscalar,agl€1(t) = 1)
and a negative (Rscalar,agle]l(t) = —1) part [5,6].
The vector Preisach model based on rotational
operators utilizes the same update rule as the
scalar model to set Rog[ E](Y), i.e.,

+1 if e >a
RaplE1(t) =4 —1 ifej<g ,
Rapl€](t7) else

where Rog[ €]1(t7) stands for the previous value.
The only difference to the scalar model lies in
the usage of

e = &(t) - Xap[€1(t)
instead of e. g| stands for the projection of the

input vector € onto the current rotation state
Xap[1(t). This adaption is physically motivated
by the assumption that only the projection of the
outer field along the already taken rotation

direction determines whether domains switch.

Stageless Nested-List Approach: Evaluation

The scalar Preisach model can efficiently be
implemented exploiting the Everett function [4].
The idea behind this approach is to not store a
discretized version of the actual switching state
Rscalar,apl€](t) but rather a list of dominant
input minima and maxima. Let (e1,e2,...,em)
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Fig.2. Nested-list data structure after inserting five input vectors &;j with decreasing rotational threshold ey, (shown
example for k = 0.5); @: a new entry is added fo a previously empty outer list (rows of the table); a nested inner
list of values e, (last column) is initialized with the projection e, = (0.0, 1.0)7-(0.0,1.0)7 according to (4);
@: whenever an entry is inserted into the outer list, it inherits the inner list of the previous entry; ®: after adding a
new entry to the outer list, all inner lists are updated with corresponding projections e||;; @: the application of the
wiping-out rules known from the scalar Everett function removes unneeded entries from the inner list, i.e.,
consecutive minima / maxima of smaller / larger value overwrite previous minima / maxima of larger / smaller

be a list of such dominant input values, then the
output of the scalar Preisach operator can be
computed via

p(t) = sign(e1)é(—e1, e1)+
M—1

— 4
2 > sign(eir1 —eE(es eir1) *
=1
where
ey eir1) = j u(a, B) dadg (5)
Aei,ei+1
defines the Everett function.
Aei,em = {(CX, B) € Rz/
min(e;, ei+1) < a < max(e;, ei+1) (6)

min(e;, ei+1) < B L a}

is the triangular area enclosed by e; and ej+1.
A direct application of this approach to the
vector Preisach model is not possible. This
origins from the usage of e = &(t): XaglE1(t)
during the evaluation of Ragl[€](t), which
causes a dependency between switching and
rotational operator. Due to that dependency,
each TI'-shaped subarea corresponding to a
rotation state Xag,j[€](t) will be separated into a
+1 and -1 part by an own set (e, €|, -+, €[ln)
of projection minima and maxima as depicted in
Fig. 1. Therewith, it is not possible to store all
values of ¢ that would be needed to
reconstruct the full state of Rag[ E](t) in a single
list. To resolve this issue, we propose a nested-
list data structure as sketched in Fig. 2. The
idea behind this data structure is as follows.
For each input vector &;, an entry is added to an

value.
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outer list. This outer list is sorted by the values
of ey; in descending order. Each entry j of the
outer list stores ey, the corresponding rotation
state Xag,j as well as an inner list of projections
€|, = Xap,j - €i. Using this kind of data structure,
the evaluation of B(t) can be performed via an
adapted form of the Everett function in the
following way. For each entry j of the outer list,
calculate its contribution

Bj(t) = Xap,j(sign(ey, Ye(—ey,, €y, )+
M—-1

2 Z sign(ey,, — e”ji)g(e”ji’ €lljie1))
i=1

to the overall output
K
p(tY =D Bi(t).
j=1
Thereby, the adapted Everett function

g(e”j[' e||ji+1) =
j u(a, B) dadp — f (o, B) dadB  (7)
ex; €xj—1
©llji-Clljis 1 Ellji- i1

gets utilized. This adapted version restricts the
triangular integration area to the boundaries of
the corresponding rotation area. The restricted
integration areas can be expressed as

exj

— 2
e||ji,tE||jl.Jr1 - {(G, B) eR ’
min(ey;, eyj,,) < a < min(max(ey;, ., ), ex;)
max(min(ey;, ejj,,). —ex) < < al. (8)

For j =0, the second integral in (7) becomes 0,
which is equivalent to setting ey, =0,
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Fig.3. Nested-list data structure of Fig. 2 after inserting a sixth input vectors with a rotational threshold of 0.445;
®: a new entry is inserted at the second position of the list due to its value of ey;, ®: new entry inherits the inner
list from the entry with larger ey,; @: the stored rotation state Xag,k of all entries with ey, < ey; gets overwritten
according to (5) (shown example for Ap = 0); ®: the inner lists gets updated according to (4) using the already
overwritten rotation states Xag,k; @ apply the wiping-out rules used for the scalar model.

Stageless Nested-List Approach: Updating
Rules

In the previous section, the nested-list data
structure was introduced briefly and it was
shown that it can be evaluated using an
adapted Everett function. In the next step, we
want to specify how the nested list has to be
updated correctly. At first, consider the case of
adding an input &(t), which rotational threshold
€y is the smallest value so far. In that case, the
updating is done using the steps as shown in
Fig. 2:

® Evaluate the current rotation state Xag using
(1) and append a new entry to the end of the
outer list storing ey and Xog.

®@ Inherit (i.e., copy) the inner list from the
previous entry (if any).

® For each entry j of the outer list, update the
corresponding inner lists with e|; = Xag,j - €(1).

@ Apply the wiping-out rules as used for the
scalar Preisach model [4] to remove unneeded
entries from the inner lists.

In case that an input &(t) has to be added which
has a larger rotational threshold €y than some
or all currently stored entries, the updating
steps are as follows (see Fig. 3):

® Compute €y using (3) and insert a new entry
at position n to the outer list, such that
€x,_1 < ey < ey, Evaluate Xag using (1) and
store ey and Xag in the new entry.

® Inherit the inner list from the previous entry.
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@ For each entry j of the outer list with j > n,
set Xag.j = Xap.

For each entry j of the outer list, update the
corresponding inner lists with ey; = Xap,j - €(t)
using the already overwritten rotation states.

® Apply the wiping-out rules from the scalar
Preisach model.

It shall be noticed that entries of the outer list
are not removed in neither of both cases. The
reason for this lies in the fact that the switching
state Rqg[&](t) may not directly change if the
values of Xagl[€](t) changes, but only due to
the projection e = €(t) - Xag[ €1(t) of the current
input. Previously computed values of €| remain
unaffected by later changes of Xag(t). This
persistence of Rqg[ E](t) is taken care of by the
inheritage steps @/® and the replacement of
the rotation state in step @ that is done instead
of removing an outer list entry. Apparently, the
lack of deletion rules of the outer list leads to an
ever growing data structure. To remove entries
from the outer list without violating the named
persistence of Rqag[ ](t), one can check for the
following case. If two consecutive entries j,j+ 1
of the outer list have the same rotation state
Xap,j = Xap,j+1 as well as identical inner lists, the
entry with smaller value ey can be removed
from the list without the loss of information. This
can easily be seen by considering (7) and (8).
Unluckily, both criteria are seldom satisfied after
applying the insertion steps O to @ or ® to ®.
A save deletion can, nevertheless, be achieved
after performing the steps as depicted in Fig. 4:
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Fig.4. Final state of the nested-list data structure after applying optional simplification steps; @: after adding a
new entry to the outer list but before inserting a new value to the inner lists, restrict all previously stored entries
with e, > ey; toex; and all entries with e, < —ey; to —ex;; @ insert the unrestricted new values of e, to the inner

lists and apply the wiping-out rules of the scalar Preisach model; @: starting at the end of the list, remove all
entries k from the outer list, if Xap,k = Xap,k—1 and e, = e|,_,, Vi.

Before updating the inner list according to
step ® or ®, restrict all values e|; of the inner
list to the corresponding values of ey, i.e., set
all values e; <—ey to —ey, and all values
€|l = €y; to ey;.

@ Update the inner list with the current,
unrestricted value e|; = Xap, - €(t), then apply

the wiping out step @ or @.

® Starting with the last entry of the outer list,
remove each entry j, if Xag,j=Xagj-1 and
€llki = €ll-1; V-

Results

After proposing the stageless, nested-list
approach for the evaluation of the vector
Preisach model, a comparison to the formerly
required matrix-based evaluation shall be given.
The matrix-based approach is based on the
discretization of the Preisach plane S into N
rows and columns. For each discrete cell (p, q)
with coordinates (ap,Bq) a switching state
Ra,8,[€1(t) and a rotation state Xa,p,[€1(t) can
be evaluated. These values are stored in
matrices of N x N elements. The evaluation of
p(t), finally, is performed via matrix-matrix
multiplications.  Obviously, this kind of
discretization only reacts to input variations in
steps of Ae=2/n. Figure 5 displays the
normalized in- and output of the vector Preisach
operator for the matrix-based approach with
N =10,100,1000 as well as for the presented
stageless evaluation scheme. For N=10 and
N =100 the computed output clearly suffers
from discrete steppings, although the height of
the discrete steps reduces strongly from N =10
to N=100. Taking a closer look at the output
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curves reveals that for N = 1000, the output of
the hysteresis operator still is non-smooth and
shows discrete stepping. On the other hand, the
nested-list approach produces a stageless, i.e.,
smooth output. Furthermore as seen by looking
at the results under logarithmic scaling, the
proposed nested-list approach is able to resolve
the output signal up to machine precision,
whereas the minimal possible output of the
matrix based schemes scales with 1/n2. At this
point, it has to be stated that the accuracy of
the nested-list approach is limited by the
evaluation of the integrals in the adapted
Everett function (7). As far as these integrals
can be solved exactly, ie., due to an
analytically integrable weighting function
u(a, B), the evaluation via the Everett function
will be precise. In practice, however, this
property seldom can be found even if analytical
functions like the wupat(a, B)-function [11] are
used. In that case, we propose the following
approach. Besides the nested-list data
structure, a matrix of N rows and columns is
used to store a discretized form of u(a,B). N
should be chosen sufficiently large to represent
the weighting function as accurate as needed.
The evaluation of the Everett integrals is
performed by summing up all discrete weights
that are inside the integral area. Cells with
coordinates (ap,Bg) that are only partially
overlapped by the integral bounds have to be
scaled by the amount of actual overlap. The
shown results for the nested-list approach
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Fig. 5. Top: Normalized two dimensional input
&=(ex,ey)” of the vector Preisach operator;
a) exponential increase; b) cosine decrease; c)
linear increase; d) 1/t decrease; e) logarithmic
increase; f) t3 increase; Middle: Normalized y-
component of the output 5 = (px, py)'for matrix-
based implementation (N=10,100,1000) and
nested-list approach (stageless); for N =10 and
N =100, discretizational errors are clearly
visible; Close-up: Even for N =1000, the output
is non-smooth, i.e., features discrete steps;
Bottom: logarithmic  output; nested-list
approach can resolve output up to double
precision limit; accuracy limit of matrix-based
implementation scales with /N2,

were calculated using this kind of approach with
N =10,100,1000. Due to a used constant
weight function u(a,B)=0.5 no difference
could be observed in the results. Of course, the
computational time increases with N. However,
compared to a pure matrix-based approach and
for the shown example, the nested-list
approach achieved a speed-up of 2.5 for
N =100 and a speed-up of 30 for N =1000.
Therewith, it is not only more accurate but also
computationally more efficient.

Conclusion

In this contribution, we presented a newly
developed evaluation scheme for a vector
Preisach model based on rotational operators.
This scheme exploits a nested-list data
structure and is able to evaluate the vector
Preisach operator in a stageless way.
Appropriate updating and deletion rules were
presented that reduce the amount of stored
data to a minimum. A comparison to the
previously required matrix-based evaluation
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approach demonstrated a clear superiority in
terms of accuracy and runtime.
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