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Abstract

In this work, we present a statistical condition monitoring system allowing the qualitative and
quantitative determination of typical faults related to the hydraulic system as well as sensor faults of
the installed sensor network. Single sensor faults such as constant offset, drift, noise, and signal
peaks can be identified before leading to false alarms. Furthermore, the system is able to compensate
the failure of up to 5 sensors with sufficient classification performance exploiting inherent correlations
of sensor signals. Feature extraction, selection, and classification using LDA are fully automated.
Thus, the system can react to a detected sensor fault and adapt the sensor data used for analysis
significantly improving the robustness of condition monitoring system.
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Introduction

Since recent decades, condition monitoring of
industrial and mobile hydraulic applications, as
a significant part of the condition-based
maintenance strategy, is growing in importance
[1. Thereby, machine downtimes and
maintenance costs can be reduced, but also
planning security of production processes can
be enhanced considerably. However, not only
the machine to be monitored but also the
condition monitoring system (CMS) itself can be
affected by failures: A small undiscovered
sensor malfunction, such as signal degradation
caused by drift or noise, can result in gradual
misclassification of the monitored system state.
In this case, it is difficult to distinguish between
the state of the monitored component and the
underlying sensor fault. In many industrial
applications, sensors and electronics are faced
with harsh environments like a wide range of
operating temperatures, strong electromagnetic
fields, and aggressive media, which can affect
the sensor signals. Also wiring problems,
sensor cross-sensitivities and ageing of sensor
elements are challenges for the robustness and
reliability of CMS. There are different
publications addressing sensor fault detection
using symbolic dynamic filtering [2], Fuzzy
voting and Kalman filtering [3], distributed
filtering [4], and uncertainty-based distribution
analysis [5]. Zug et al. used failure mode and
effects analysis (FMEA) to identify and exclude
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faulty sensor signals in a sensor network [6].
Furthermore Tang et al. proposed an approach
for the trustworthiness analysis of alarms based
on sensor data in cyber-physical systems [7]. In
this work, we expand the previously proposed
automated statistical method for fault detection
in hydraulic systems [8, 9] to the detection of
typical sensor faults such as constant offset,
drift, noise and sudden signal peaks.

Concept and experimental system

Fig. 1 illustrates the procedure to train the CMS:
Training data is collected via a modified
hydraulic test bench which simulates different
component conditions of cooler C1 (cooling
efficiency degradation), valve V10 (impeded
spool), main pump MP1 (internal leakage) and
accumulator pre-charge pressure loss, here
simulated with four accumulators A1 - A4 at
different pre-charge pressures. The test bench
is equipped with process sensors measuring
pressures (PS1-6), volume flows (FS1-2),
electrical pump input power (EPS1),
temperatures (TS1-4) and vibration (VS1),
furthermore three virtual sensors for cooling
efficiency, cooling power and system efficiency
are derived from physical sensor values. In
total, 17 sensor signals are stored while the
hydraulic system repeats pre-defined constant
working cycles with changing conditions of
hydraulic components to identify typical signal
patterns. The working cycle (duration 60 sec)
consists of different segments with transient
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and static load characteristics performed by the
proportional pressure relief valve V11 and the
directional valve V10 simulating a typical
machine operation. After collecting raw sensor
data during characterization measurement, the
data for each cycle are split into 13 segments
(valve V10 operation, static and transient loads)
extracting features such as statistical moments
(median, variance, skewness, and kurtosis) and
signal shape parameters (fit of slope, position of
maximum value) in each segment. From the
resulting pool of 1326 features the 20 most
significant features were chosen using the
Pearson correlation with the four simulated
hydraulic faults as selection criterion (feature
selection). The final step is the dimensional
reduction of the feature vector using LDA, here
from 20 to 2 dimensions (discriminant functions,
DF), and subsequent classification using the k-
nearest-neighbor algorithm.

Furthermore, the raw signals of relevant
sensors used for hydraulic fault monitoring were
modified by implementing typical sensor faults
such as constant offset, drift, noise and signal
peaks pointing to an incorrect function of sensor
or electronics. Here, each sensor fault type and
grade is mathematically superimposed on the
complete characterization measurement. Thus,
the robustness of CMS to sensor malfunctions
is studied, but also the ability to detect these
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Fig.1. Hydraulic system and concept of data analysis

Results

As shown in fig. 2, fault-specific characteristic
feature patterns can be obtained allowing the
quantitative determination of fault severity
grades in the hydraulic system in a two-
dimensional LDA space. Here, features from
several fault grades are used for calculating the
LDA coefficients (“training”) while data from the
further grades were projected to validate the
ability to interpolate states that were not

malfunctions using suitable sensor explicitly considered in training and verify the
interdependency features, e.g. ratios and performance of statistical model. Features
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Fig 2. LDA space of typical hydraulic component faults (a) cooler degradation, (b) valve operation deterioration,
(c) internal pump leakage, and (d) gas leakage of accumulator using 20 features with trained and projected fault
states.
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monitoring are median values of virtual sensors
cooling efficiency and cooling power detecting
an efficiency reduction of less than 1%
simulated by a duty-cycle (DC) of 90 % of the
fan installed at cooler leading to a long-term
fluid temperature increase of 0.5°C. A duty-
cycle of 0 % corresponds to a relative decline of
73 % cooling power which results in oil
temperatures higher than 80 °C. The monitoring
of directional valve is based on pressure
sensors installed before and after the valve
analyzing the transient phase during valve
operation using distribution (e.g. variance,
skewness, and kurtosis) and signal shape
(slope) functions. Here, the movement of spool
is impeded by reducing the control current
simulating an increased friction e.g. caused by
substantial particle contamination of fluid. Even
slight variations of current (<2 %) can be
detected. Another analyzed fault type is internal
pump leakage imitated by orifices bypassing
high and low pressure ports of the pump. The
leakage levels are 3.3 % (slight), 4.6 % (fair) of
nominal pump flow rate. Furthermore,
measurements of a hydraulic “short-circuiting”
of pump were projected (severe leakage) by
directly connecting the high pressure port to the
tank. The features used for pump monitoring
are median values of flow, system efficiency
(virtual sensor), and pressures of static load
phases. Especially piston-type accumulators
are affected by gas leakage resulting in a
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decrease of pre-charge pressure and a failure
of operation in the long-term. The different pre-
charge pressure levels of accumulator (fig. 2d)
can be quantified by DF1, correctly projecting
the intermediate state (115 bar) in LDA space.
The significant features for accumulator
monitoring are characteristics such as slope,
variance, skewness, and kurtosis of transient
load phases of power, pressure, and flow
Sensors.

In a further measurement, a constant working
cycle with combinations of previously shown
fault types including three cooling efficiencies
(100 %, 20 %, and 3 % fan duty cycle), three
valve states (100 %, 85 %, and 73 % control
current), three pump leakage levels (inactive,
slight and fair leakage) and four accumulator
pre-charge pressures (130, 115, 100, and
90 bar) was analyzed within a fluid temperature
interval from approx. 45°C to 65 °C. In this
measurement sensor faults are superimposed:
In case of “constant offset”, four fault grades of
pressure sensor PS1 are studied (1, 2, 5,
10 bar) as exemplarily shown in fig. 3a. Fig 3b
illustrates the “baseline drift” of PS1 with
different drift rates ranging from 0.5 to
5.0 %o per hour affecting the mean cycle value
simulating a cross-sensitivity such as
temperature change. Note that there is an
inherent long-term change of the mean
pressure in the measurement itself (especially
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Fig. 3. Pressure sensor signals over operating cycle injecting the sensor faults (a) constant offset, (b)
baseline drift, (c) noise, and (d) peak superposition with different grades of severity.
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around hour 3) which makes it difficult to
differentiate between the different drift rates
with an isolated sensor analysis. Furthermore,
fig. 3c shows an artificially deteriorated sensor
signal using Gaussian white noise with different
amplitudes generating 30 dB, 20 dB, 10 dB and
0dB signal-to-noise ratios (based on a
normalized signal). Another sensor fault studied
is the appearance of sharp short signal peaks
with large amplitudes (fig. 3d) which do not
reflect realistic measurements. Here the
number of peaks which are randomly placed in
the working cycle ranges from 1 to 50.

Now the performance of CMS for hydraulic
components is tested while the signals of most
significant sensors are affected by drift and
noise faults with different grades of severity
(fig. 4). In general, there are considerable
variations in the decline of detection rate
dependent on hydraulic component. While the
cooler monitoring is not affected at all by these
sensors faults (constant 100 % correct
classifications), the valve monitoring detection
rate especially decreases in presence of high
noise amplitudes due to the use of susceptible
transient features (fig. 4b). Compared to cooler
and valve condition monitoring, pump and
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accumulator are highly prone to sensor
disturbances. The pump leakage detection
(fig. 4c) particularly degrades with increasing
drift rates which cause significant shifts of the
used median features. In case of accumulator
(fig. 4d) only a slow drift rate of 0.5 %o per hour
induces a sharp decline of detection rate from
95 % to 42 %, also barely noticeable noise
amplitudes (30 dB SNR) degrade the
classification by more than 20 %. The validity of
sensor signals consequently is an issue of
importance which has to be considered in the
condition monitoring system ensuring a robust
and reliable analysis.

In the following analysis, sensor faults are
applied to the single pressure sensor PS1 and
classification target values are the grades of
severity using the same measurement dataset
as in fig. 4. The automated feature extraction
and selection method corresponds to the
hydraulic component monitoring (fig. 2), though
the feature domains are different. In case of
offset and drift disturbances, we use a
cascaded feature extraction first computing
median ratio values over the whole cycle of
different sensors in the hydraulic system and
subsequently analyzing the time-series of
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Fig. 4. Influence of sensor faults noise and drift affecting the relevant sensors on hydraulic fault
detection performance for cooler (a), valve (b), pump (c), and accumulator (d) monitoring.
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previously obtained ratios within a window of
60 minutes. For noise detection, features are
extracted from 17x17 cyclewise correlation
matrix of sensor net with 136 independent
pairwise linear correlation coefficients which are
also used for time-series feature extraction
(60 min). The peak detection is based on signal
shape and statistical moments similar to the
feature domain of hydraulic fault detection.
Fig. 5 shows the LDA spaces of different sensor
disturbance types using several fault grades for
training and the other grades for evaluation.
The constant offset (fig. 5a) can be detected for
slight offset values in the range of 1 bar (which
corresponds to an error of 0.4 % of full scale)
even though there is no clear class separation
due to inherent signal ratio variations, and
intermediate fault grades (2 bar, 10 bar) are
properly projected. The drift detection (fig. 5b)
exhibits a good class separation discriminating
very slow drift rates (0.5 %o per hour) and
normal sensor operation in typical application
sensor data. Just as well, the statistical model
for drift recognition is able to correctly
interpolate fault grades not considered in
training (1.5 %0 and 5.0 %o per hour). In case of
noise monitoring (fig. 5c), the detection limit
based on correlation features is 20 dB signal-to-
noise ratio which is a good result exempt from
accumulator monitoring where 30 dB SNR
degrades noticeably  the classification
performance. Not only noise sensor faults can
be identified but also sensor wiring problems

DOI 10.5162/sensor2015/D8.1

such as cable break simulated by freezing the
sensor value to zero with additional noise which
results in DF1 values far in the negative range.
Also the number of induced signal peaks
(fig. 5d) is correctly quantified and the trained
LDA can be successfully applied to test data. In
summary, all studied sensor fault types can be
identified with the presented approach and
feature domains allowing and fault grade
estimation with DF1 values. Here, only the
presence of a single sensor disturbance was
analyzed, the determination of several faulty
sensors occurring simultaneously is aim of
future work. Based on the shown sensor fault
classification (fig. 5) and the susceptibility of
CMS to sensor faults (fig. 4), limit values for
DF1 pointing to sensor malfunction can be
defined to decide whether the sensor data is
invalid and should be ignored in actual
diagnosis. In this case, the training data set has
to be adapted by excluding the data of the
concerned sensor and performing a re-training
of feature selection and LDA to find the next
best features for the specific component
monitoring and compensate the sensor fault. In
fig. 6, the ability of sensor network to
compensate failures of most significant sensors
is studied: Due to partially redundant sensor
signals, the failure of up to 5 significant sensors
can be compensated with acceptable
classification rates (cooler, valve, pump) in the
range of 90 %. Comparison between the two
supervised classification methods LDA and
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Fig. 5. LDA plots for sensor fault monitoring of (a) constant offset, (b) baseline drift, (c) noise, and (d) peak
superposition each with trained and projected states for validation.
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artificial neural network (ANN, multilayer
perceptron with 10 hidden layers) shows slightly
higher detection rates (up to 20 %) for ANN,
especially for challenging classification data
with many excluded sensors.
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Fig. 6. Classification rate of hydraulic system fault vs.
number of excluded sensors for LDA with k-nearest-
neighbor (k =3) classifier and for a multilayer
perceptron with 10 hidden layers.

Conclusion

The presented condition monitoring approach
covers a wide range of detectable fault types
such as faults related to the hydraulic system
as well as different kinds of sensor
malfunctions. Automated feature extraction,
selection and supervised learning were proven
to be suitable for the identification and severity
grade estimation of typical sensor faults such
as constant offset (detection limit 0.4 % error
FS), drift (detection limit 0.5 %o per hour), noise
(detection limit 20 dB SNR) and signal peaks
(single peak detection limit). Therefore, time-
series interrelation features of the sensors in
network are used like median ratios and
pairwise correlations. In case of a sensor fault,
the affected sensor can be identified
automatically and substituted by the sensor
network considerably improving the overall
reliability of the CM system. By exploiting
hidden signal redundancies using correlation
criteria, it has been demonstrated that the
system compensates the failure of up to 5
sensors including significant information with
marginal degradation of classification
performance.
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