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Abstract: 

Data transmission is by far the most energy consuming operation a wireless sensor node needs to 
perform. Hence, the most effective method of extending the lifetime of such a usually battery-powered 
device is to reduce the amount of sending intervals. One way of treating this issue is by using system 
identification and forecasting. That basically implies to take a reasonable amount of sample data for 
building a close-to-perfect system model and to perform a one-step prediction out of the given 
information on sensor node and gateway simultaneously. For doing so measurements of temperature, 
humidity, force and friction have been taken and analyzed. The novelty of our approach is the 
simplicity of our algorithm compared to other works, its measureable energy savings in real life 
environments and its potential for online parameter estimation. 

Key words: system identification, parallel forecasting, one-step prediction, lifetime extension, wireless 
sensor networks.

Introduction 

Nowadays, the amount of possible fields of 
application for wireless sensor networks 
(WSNs) is increasing ever faster with seemingly 
endless ideas. While the principle concept was 
just measuring environmental values in the 
beginning, complex surveillance and 
automation tasks came into consideration more 
often recently. Thinking of industrial plants for 
example, to determine vibrations, forces, friction 
and other parameters of conveyer belts can be 
very tough especially when trying to find a wired 
solution. Hence, the availability of wireless 
sensors is a welcoming change in this particular 
area of application. 

Although this advanced technology paves the 
way for a wide variety of possibilities, it comes 
with some new challenges as well. Speaking of 
which their limited resources in terms of size, 
availability, computation time and storage 
capacity are restrictions that need to be 
obeyed. One of the most demanding is the 
available energy, though. In most cases WSNs 
are battery powered and therefore have a 
limited lifetime. Its span mainly depends on the 
task the sensor has to fulfill and the capacity of 
the power sources, and can reach from several 
weeks up to ten or more years.  

For making WSNs even cheaper, long-lasting 
and therefore more attractive to customers the 
efficient usage of the battery for either using 

smaller cells or extending the lifetime is one 
major focus in research at the moment. Since 
the most energy consuming component of a 
sensor node is the transceiver as shown in  
Fig. 1, reducing the amount of transmissions 
over time is a common approach.  

 

Fig. 1. Energy consumption of wireless sensor 
nodes’ components. 

Problem 

Several well-known data aggregation strategies 
have been implemented to aim for a reduced 
amount of current drawn from the battery in the 
past, but major improvements just started with 
the idea of using system identification and 
forecasting [1, 2] in 2001. The concept was to 
describe an observed physical process with the 
help of mathematics, combine this information 
with the sensors inputs to predict the next value 
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and to not transmit successful forecasted 
measurement.  

Transferring the load from the transceiver to the 
microcontroller made sense especially when 
looking at Fig. 1 again, but there were a few 
drawbacks to this method. First of all the 
knowledge of the physics of the whole process 
or a large amount of sample data for building an 
adequate model is required. Once the model is 
build it might became too complex for being 
implemented on a relatively cheap sensor node. 
Further works [3, 4, 5, 6] tried to address this 
and similar issues but either designed solutions 
for very specific purposes or remained in 
conceptual state. 

Hence, the focus of our work was to find a 
simple, fast and efficient solution for 
implementing a forecasting algorithm into 
sensor nodes measuring a large variety of 
different values in factory sites without having 
extensive a-priori knowledge. In addition, 
results should be verified in a real life 
environment using TelosB sensor nodes. 

Solution 

The principle idea of or work is based on the 
approaches mentioned above and the routine is 
shown in Fig. 2. The concept starts with having 
the ability of almost simultaneously measuring 
and calculating. This being said, the nodes task 
is to sense for new input while performing a 
one-step prediction out of a limited amount of 
previous data at the same time. Afterwards, the 
measured and the forecasted value are 
compared against a tight threshold. In case of 
the calculation is close enough the result is 
being used for the next prediction and the 
sensed value is dropped. Otherwise the 
measurement needs to be transmitted and the 
prediction result will be ignored.  

 

Fig. 2: Fast and efficient dual-forecasting algorithm 
scheme 

Meanwhile the gateway is performing the same 
(dual) forecasting algorithm as long as there is 
no contrary input from the sensor node 
recognized. 

In terms of the system model describing the 
process a linear 5

th
 order AutoRegressive 

model with eXogenous input (ARX) was 
chosen. The reasons for that were mainly its 
simplicity concerning building as well as 
implementing and its exactable performance 
even in difficult fields according to [7]. For the 
initial determination of the corresponding 
parameters a set of sample data in form of 
temperature readings was taken. 

Basics 

ARX in general is a linear difference equation 
that describes the connectedness between the 

output )(ty  and the input )(tu  as follows: 
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Since the measurements are collected by 
sampling, discrete time t  can be assumed. To 

keep the required system knowledge to a 
minimum the influence of noise is neglected, 
what in turn helps to keep the later algorithm 
simple as well as fast. 

In order to perform a one-step prediction, which 
means calculating a new output value out of 
previous data, (1) can be rewritten into: 
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Imagining a real life environment one will soon 
realize, that we only have access to the output 
value and the sampling rate. Combining this 
fact with the statement of neglecting noise 

influences )(tu  can be assumed to equal 

)(ty , which leads us to: 
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Now we do not need two different parameters 

anymore. Substituting mn ba ⋅  by na  reduces 

(3) to: 

)(...)1()(
1
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This equation is already good enough for 
implementing it into a sensor node but not as 
suitable for system identification purposes. 

Hence, the vectors θ  and φ   
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are introduced to note (4) in a more compact 
way as: 

θφ ⋅= )()( tty T
 (6) 

Thereby θ  contains the ARX parameters 

(weights) that need to be determined next. For 
doing so the mentioned set of sample data 

collected within the time interval Nt ≤≤1  is 

used in combination with the least square 
method according to [6] and [8] in from of: 
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Energy Savings 

As described above the goal of system 
identification and forecasting is to extend the 
lifetime of WSNs by reducing the current drawn 
from the battery over time. Hence, an equation 
for describing the possible energy saving is 
needed. In order to get easily comparable 
results we assume that the gateway is always 
ready for reception and therefore concentrate 
on the sender only according to [9]. 

Consequently, the following representation for 
energy consumption is used: 
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In this case U  is the voltage of the battery, 0I  

and txI  are the currents drawn while the 

microcontroller is sleeping and during 

transmission, while 0t  represents the sleeping 

time. Accordingly, oht  and bytet are the times 

needed for transmitting the overhead and one 

byte of data, datap  is the amount of bytes, 

CPUI  and predt  are current and time during the 

prediction calculation and lastly r  is the 
number of the forecasting steps. 

In case the algorithm helps to avoid 1−r  out of 
r  transmission the normalized energy saving 
function can be noted as: 
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Here transstdE −  is the energy required for a 

standard transmission and transpredE −  for 

performing a one-step prediction respectively. 

Substituting (8) into (9) one will get: 
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)(rE∆  needs to be 0>  to proof that energy is 

saved, which can only be realized by fulfilling 

the condition 1>r . 

Using the technical data ≈≈ txII 0 20mA,  

≈0t 0.4ms, ≈bytet 0.032ms, ≈oht 0.8ms, 

≈CPUI 2mA and ≈predt 1ms of the mentioned 

TelosB sensor node by Crossbow including the 
assumption that the overhead is 25 Bytes, a 
measurement 2 Bytes and its timestamp  

4 Bytes in length as well as =datap 6, (10) will 

become: 
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This leaves r  the only unknown parameter and 
therefore the potential energy saving can be 
determined directly out of the amount of 
successful forecasted values. 

Results 

Using (7), a set of 3000 temperature readings 
covering three days, 1000 validation 
measurements and the MATLAB System 
Identification Toolbox we were able to find 
some well-fitting parameters for the intended 5

th
 

order ARX model as follows: 
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To verify the quality of this weights another 
6000 sample data were collected and used as a 
reference. As one can see in Fig. 3 the 
predicted values are “following” the measured 
ones quite well, leading to a prediction 
probability of more than 80%. Hence, in theory 
4 out of 5 transmissions can be avoided. In 
other words: =r 5. 
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This in turn means that an energy saving 
potential of remarkable 74% can be reached 
according to (11). 

 

Fig. 3: Comparison between measured (grey) and 
forecasted (black) values 

Still, building a weighted sum out of 3000 
temperature data with the help of numerical 
software is not necessary a proof of concept. 
That is why we went on analyzing three major 
improvements to our work so far: a) using (12) 
for other measurements, b) reducing the 
amount of sample data and repeating the 
system identification as well as verification and 
finally c) extending the given variety of 
measurements of conveyer belts. More 
complex models like the Kalman can be 
neglected here, because their forecasting 
accuracy is not higher for linear one-step 
prediction in this particular case [10]. 

As for a) we figured that (12) can easily be used 
for temperature readings with a wider range as 
well as for similar (corresponding) 
measurements like humidity and dew point. In 
both cases the forecasting probability and 
therefore the energy saving differs in the range 
of 3% maximum compared to a specific system 
identification. This finding can save engineering 
time and increases usability and applicability of 
WSNs. On the other hand (12) will not work for 
force and friction in the same manner but will 
cause only half of the energy saving possible. 

In terms of b) using only one third of the original 
samples can still work out with up to 70% of 
energy saving potential. Reducing the amount 
to 100 readings will result in only 20 – 40 % of 
energy saving. Therefore an online system 
identification process might become possible 
this way. 

Working on c) it was found that friction can also 
be handled quit well by a 5

th
 order ARX model. 

Since the data coming from the sensor is very 
noisy the result is not as good as for 
temperature readings, though. The energy 

saving potential reaches up to 60% adding a 
moving average as signal preprocessing unit to 
the algorithm. 

The findings of a) have already been verified 
with less than 5% difference in a real life 
environment using the described TelosB sensor 
nodes. 

Conclusion / Prospect 

As of now, we were able to successfully 
forecast temperature, humidity, dew point, 
friction and elongation measurements of a 
carrier belt system. This was achieved by the 
following two steps: a) taking sample data sets 
from the sensors and building a 5

th
 order ARX-

model using MATLAB, b) performing the same 
(dual) prediction algorithm on sensor and 
gateway as shown in Fig. 2. Therefore, the 
wireless node can compare the measurement 
and the forecast against a tight threshold and 
only transmits its data when the given limit is 
exceeded. 

Since an ARX-model is basically a weighted 
sum, it is a fairly simple and efficient algorithm 
to build and it does hardly require any 
computation time or energy. Still, it is a powerful 
tool with the ability to outperform other models 
like ARIMA and the Kalman-Filter in some 
cases. Hence, we can extend the nodes’ 
lifetime by up to 74% for temperature and 60% 
for friction, using TelosBs and TinyOS. 

In addition, we are working on reducing the 
sample data length for performing step a) online 
directly on the sensor nodes in an efficient way 
with partial only slightly worse results. 
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