DOI 10.5162/sensor2015/P10.4

Consistency Based Sensor Defect Detection

Jan-Friedrich Ehlenbréker, Uwe Ménks, Volker Lohweg
inlT — Institute Industrial IT, Langenbruch 6, 32657 Lemgo, Germany
Jan.ehlenbroeker@hs-owl.de

Abstract:

One general problem is the detection of sensor defects. Defective sensors can have several negative
consequences, €. g., they will lead to machine failure when wear and tear of a machine is not detected
sufficiently in advance. In this contribution we present a method to detect faulty sensors by calculating
the consistency between sensor values. Background for this consistency-driven approach is a sensor
fusion algorithm which combines sensors to attributes. These attributes are generally created based
on local or thematical proximity. Therefore a consistency based approach is promising.
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Introduction

When using a sensor in an application it is
generally assumed that it is operating correctly.
But sensors can fail and do so during typical
operation. This failure can be caused by
wrongful handling, by wear and tear, or it can
be a random failure. The failure may be a
complete failure of the sensor, which is easily
detectable, as the sensors stop delivering any
data. Other defects are harder to detect.

When a sensor continuously delivers values, it
is not necessarily directly detectable or
decidable if the sensor measurements are valid
or not. The sensor might produce values that
deviate more from the true value than their
given accuracy. These types of defects are
problematic. An example is the application of
sensors for condition monitoring purposes in
manufacturing processes. Here, sensor defects
can lead to a decrease in product quality or a
reduction in the produced quantity of a given
product. Depending on the use case of the
sensor it is also possible that a sensor defect
can have more severe consequences.

There are multiple possible ways to detect and
handle sensor defects. One approach is the
usage of intelligent sensors that execute self-
tests to detect the sensor performance and
sensor defects. Depending on the type of
sensor and the intended use, this may be a
valid way to handle sensor defects. On the
other hand, the self-testing capabilities are
often limited to simple function tests.
Additionally, intelligent sensors have higher
acquisition costs compared to sensors without
self-test abilities. Moreover, sensors with self-
test abilities are not available for every use
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case, especially when applications impose
special requirements, e. g. explosion protection.

A different approach is the usage of multiple
sensors for monitoring of one and the same
object or property. A simple way to further
process the observations of multiple sensors is
a threshold system. Every sensor observation is
classified individually based on a threshold.
These results are fed into a majority voting
system to generate a global status [1].
Following such an approach can lower the
impact of a sensor defect, as multiple non-
defective sensors can overrule one defective
sensor. Nevertheless, such systems are too
simple to model a complex application
sufficiently.

Hence, more adequate (but also more complex)
data fusion algorithms are wused for the
processing of sensor observations and the
generation of a system state. Such data fusion
methods have been around for many years [2].
One of such data fusion algorithm is the multi-
layer attribute-based conflict-reducing
observation (MACRO, [3, 4]) algorithm. It has
shown good performance, especially in
situations, where the fused data is conflicting

[3].

Conflicting states are often caused by defective
sensors. Therefore the ability of a data fusion
system to handle conflicts is important. But
while MACRO shows good performance
concerning conflicts between sensors, there is
no direct way for the fusion algorithm to detect
defective sensors. For other sensor fusion
approaches similar statements can be made:
There a many approaches in the literature for
the detection of process anomalies by using
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sensor fusion methods, including methods that
handle or reduce conflict between sensor
observations [2]. Some sensor fusion
approaches incorporate sensor reliability values
(e.g. [6], [7])- In these case the reliability is used
as a discounting factor during the sensor fusion
process. But almost none of these sensor
fusion algorithms do use the sensor conflict or
consistency measures as a method to predict or
detect defective sensors. One exception is [8],
in which a conflict-based detection method for
defective sensors is proposed.

In this paper we propose a new method that
uses the inherent multi-layer structure of
MACRO with the help of consistency
calculations between sensors for sensor defect
detection.

The application, in which this approach of
condition monitoring and sensor defect
detection is demonstrated, is the research
project itsowl-IGel [9]. One goal of 1Gel is the
development of a condition monitoring and
early warning system for hazardous material
stores. Hazardous material stores are used to
safely store materials like dangerous chemicals.
Storage of these materials is regulated, based
on the properties of the stored materials. For
example the store must be fitted with a pan that
collects chemicals in case of a leakage.
Depending on the chemical, the hazardous
material store must also be built to withstand
fires.

This paper is separated into the following
chapters: Approach, where we first give a
general overview over the data fusion algorithm
MACRO, followed by a more detailed look into
the method for sensor defect detection. The
experiments and results are given in the
following chapter. The paper concludes with a
chapter that gives an overview over the results
and delivers an outlook on future work.

Approach

The approach section is divided into multiple
parts: First a brief description of the used data
fusion algorithm is presented. This section is
followed by a background section where a
preliminary for the following parts is given.
Sections on the sensor consistency and
reliability calculation conclude the approach.

Multi-layer Attribute-based Conflict-reducing
Observation (MACRO)

For the fusion of several sensor signal input, we
make use of the multi-layer attribute-based
conflict-reducing observation (MACRO)
approach. It has been shown that the
application of this approach for hazardous
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material store monitoring is beneficial compared
to usual installations [10]. MACRO'’s structure is
depicted in Fig. 1 and the fusion is carried out
as follows:

For the determination of a hazardous material
store's global state, signals of itself as well as
its environment (like oxygen concentration,
temperature, humidity) are acquired by sensors
(signal sources).

Features are extracted from the signals in the
following signal conditioning step which may
also include signal preprocessing procedures.
Ensembles of conditioned signals are then
grouped to so-called attributes representing
certain properties or physical parts of the
observed store, such as air quality, ventilation,
air conditioning. During a first training phase
under ensured good condition, the features
acquired are learned and used for reference in
the monitoring phase. The attributes are
application-dependent and defined during the
design process. Redundancies occurring by
combining at least two information sources to
one attribute are used beneficially for both (i)
intercepting sensor faults and (i) cross-
checking the consistency of sensor values.

The latter is carried out implicitly by the
psychologically inspired fuzzified balanced two-
layer conflict solving (u BalTLCS) fusion
approach [5]: u BalTLCS creates one output
signal per attribute from its input signals and
assigns the attribute an importance measure
which is the negated conflict between the
sensors' individual opinions. Conflict occurs
whenever information does not bear evidence
for only one opinion/proposition, but also for
another. This might either be due to actual
failure in the process or system observed, or
caused by one or some defective sensors. The
latter case is the most severe one as wrong
decisions might be derived if sensors were
considered reliable, although they are not.

Subsequently, the fused attributes' opinions
(4 BalTLCS output signals) are aggregated on
system level using the Implicative Importance
Weighted  Ordered  Weighted  Averaging
(IWOWA) operator [11] to reason about the
entire store under supervision. It weights each
attribute according to its previously determined
importance, such that attributes with a high
conflict have only small or no impact on the
aggregation result.

Detailed information regarding MACRO can be
found in [4, 5].
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Fig. 1. Multi-layer attribute-based conflict-reducing
observation system MACRO.

In this work we concentrate on MACRO’s core
fusion part u BalTLCS on the attribute layer.
Here, the sensor signals are fused initially and
checked for consistency.

Background

Our approach takes the sensors that are
combined to an attribute and calculates
consistency values for every sensor. These
consistency values are calculated based on the
sensor values for a given point in time and are
in turn used to generate a reliability value for
every sensor. The proposed approach is based
on parts of the sensor fusion algorithm
proposed by Glock et al. [12].

Sensor observations are modeled as possibility
distribution, a concept based on the possibility
theory, introduced by Zadeh in 1978 [13]. A
short definition and introduction of the used
aspects of the possibility theory follows: Given
X is the universe of discourse, the variable v
represents an imprecisely known value of a
feature F inside X. The variable v may for
example be the temperature of an object or a
distance measurement. We now model this
feature as a fuzzy set F with the characteristic
membership function being . (x). The only
available knowledge about v is that “v is in
F7, with F < X. If this is true the possibility
distribution is defined as follows [13]:

7, (X) = ue (X),Vx € X. @)

In case of the sensor S. the associated

1

possibility distribution is 7, ().

More details on the possibility theory and the
mathematical background of the following
approach can be found in [12].

Consistency Calculation

Given an attribute A4 that combines the n
sensors S* ={S,,S,....,S,,...,S,}, every sensor

AMA Conferences 2015 — SENSOR 2015 and IRS? 2015

DOI 10.5162/sensor2015/P10.4

has a reliability value ({p,, 0,,...,2;,...0,})- We
now look for the largest set of sensors that form
a consensus observation T with T" < S”for
every attribute:

T4 :{TA |h(TA)>o}. (2)

In Eq. (2), h is the consistency index of subset
T#, as defined in Eq. (3):

(! (). () =
. 1 2
s:j)[mm [”v (x),7’ (x):ﬂ
Eq. (2) is only valid for sensors with a reliability
of p; 20.5VS; e T#. Sensors with a lower

reliability are essentially delivering random
results and are therefore neglected in Eq. (2).

@)

To reduce the calculation costs for the
consistency of every sensor, we defuzzify every
sensor possibility distribution. Defuzzification is
done by calculating the discrete center of
gravity [14]:

o) @

The consensus observation TCA is limited by
the minimum and the maximum center of
gravities of all sensors of T2, as described in
Eq. (5) and Eq. (6):

¢, =min[C(7)] . (5)

S, T,

v

6 =max| C(z))] - (6)

The consistency of a sensor value is calculated
based on the distance between the sensor
observation and the consensus observation:

Co, (ﬁ‘i,Tc)=

1—(Cmin —C(”\i)) c(ﬂ;) <c
1—<C(7[‘i)_cmax)’c(”‘i) > Coar:

1, otherwise.

min ?

When T/ is not unique, the consensus
observation is chosen based on the highest
average reliability of the subsets. If this leads to
no unique result, the consensus observation is
chosen based on the highest consistency. In
case these steps do not lead to a unique
consistency observation, the consistency
measure is calculated based on the distance
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between the observations of sensor S; and
every other sensor of attribute A, 7, andz, :

COA(ﬂé,ﬂ';):

(8)
maX[1 - max[p,-]’ ﬂ’WAM (pi’di )]’

with 7[; = {ﬂ"f}j#i P, = (pj )j:,- ’di = (dfli )j#i and

dl,.j =1—|C(7r:)—C(7zj).

©)

In Eq. (8), the distances are weighted with the
reliability of the corresponding sensor. The
Weighted Arithmetic Mean (WAM) is used for
this  weighting operation. The maximum
reliability of every other sensor is in addition
used for the calculation of a lower bound of the
consistency of sensor S,. This results in a
consistency of 1, when all observations 71'; are
unreliable.

Summarizing, the calculation of the consistency
of sensor S, is calculated based on the
distance to the consensus observation, if there
is one, and based on the distance to all other
sensors, otherwise (cf. Eq. (10)):

co(s) |

As the consistency of one sensor can fluctuate
between different moments in time, it is
sensible to evaluate the sensor consistency
over a longer time period. Hence, instead of
using the consistency of a sensor directly, we
further process the consistency. This processed
consistency is in the following called reliability
of the sensor.

T2 >1,

Co, (ﬁL,TCA),

10
Co, (ﬁﬂ ) otherwise. 1o

An infinite impulse response filter [15] is used
for the calculation of the reliability:

qlk]=o-ulk]+(1-w)-q[k-1]. (11)

In Eq. (11), q[k] is the output of the filter at the
discrete point in time k. In addition, q[k —1]
denotes the output at the discrete point in time
k —1, while u[k] is the input value at time k.
Factor o is set to a value between 0 and 1
(we [0,1] ).

The reliability p of the sensor S, in attribute
A is the minimum value of the static reliability
r. and the dynamic reliability r, :

ol (k] =min[ r/ [k].r, [K]]. (12)

The static reliability is based on historical
experiences with the sensor itself. It can be
calculated based on the statistical failure rate of
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the sensor hardware or set based on expert
knowledge. Eg. (13) shows the calculation of
the dynamic reliability, which is based on the
infinite impulse response filter, as given in
Eq. (11):

r,[k]=w-Co(z))+(1-w)- p,[k-1]. (13)

For all points in time with k <0, the dynamic
reliability is set to 1:

ri[k]=1vk <O0. (14)

The factor o is a smoothing factor for the
reliability. High values of @ will show changes
more directly, while small values smooth the
reliability and will show reliability changes more
slowly. An overview of the influence of w is
shown in Fig. 2.

As one sensor is often used in multiple
attributes, we use the mean value over all
attributes to get the reliability at time k:

pIKl=—3 0" [K] (15)

In Egq.(15), {A,--A_} are denoting the
attributes where sensor S, is used, with m
being the number of attributes.

Experiments and Results

The use case is, as previously stated, a
hazardous material store. In the 1Gel project we
use different types of sensors:

e Temperature Sensors

e Infrared Temperature Sensors
e Smoke Detectors

o Differential Pressure Sensors
e Gas Detectors

e Leakage Detectors

e Humidity Sensors

e Power Sensors

31 sensors are positioned in total on the inside,
the air ducts, and the outside of the hazardous
material store. These sensors are combined to
20 attributes.

Our sensor observations are not acquired as
possibility distributions. Therefore we treat
every sensor observation as a uniform
probability density function (PDF). The PDF is
given by the sensor observation and the sensor
accuracy. This PDF is then transformed into a
possibility distribution with the help of a
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Truncated  Triangular
Transform [16].

As the previously described reliability
calculation is still being implemented into the
hazardous material demonstrator store, we use
synthetic and simulated sensor data. A first
example is given in Fig. 2. The smoothing effect
of lower @ values is clearly visible.

Probability-Possibility
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Fig. 2. Development of the reliability of one sensor
with @ =0.2, w=0.5 and w=1.0.

A more complex scenario is depicted in Fig. 3.
The data used for this experiment has also
been used in [10]. The sensor data simulated in
[10] depicts the development of a smoldering
fire. Smoldering fires release only a low amount
of heat energy and smoke, compared to fully
developed fires. Nevertheless they are
dangerous in the context of a hazardous
material store, especially since many of the
stored chemicals are highly explosive.
Smoldering fires can also develop into fully
developed fires. During the simulation, only
temperature sensors inside the store were
influenced by the simulated smoldering fire.
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Fig. 3. The mean reliability over all sensors and the
exemplary reliability of two sensors.

In Fig. 3 the reliability of two of the built in
temperature sensors and the mean value over
all sensors is depicted. The reliability of the
Temp_Inside 2 sensor decreases for about 10
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minutes to a reliability value of about 0.8. After
that the reliability fluctuates around this value.
The decreased reliability is the result of
generally lowered consistency, as the sensors
are distributed inside the storage unit. So while
they overall measure the same process, they
do not measure the exactly identical property.

The temperature sensor Temp_Inside 2, for
example, measures the temperature above the
smoldering fire at the upper left inside store.
Due to its proximity to the heat source it is an
outlier, compared to other temperature sensors.
Therefore, it has been assigned a lower
consistency and consequently lower reliability
compared to other sensors.

The other temperature sensor shown is further
away from the source of heat. It is therefore not
as heavily influenced by the temperature
change and its reliability values are slightly
higher and comparable to the mean reliability.

The data used for Fig. 4 is identical to the one
used in Fig. 3, with one change: In Fig. 4 a
defect of sensor Temp_Inside 0 is simulated.
This is carried out by setting the sensor
measurement to a low value, opposite to the
generally increasing temperatures.
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0.8}
. .
= A
= \
J06-
°
o« ~
lo- ™
204 Samem - g PR sespsswss
=
[
wn
0.2+ - - -Temp_Inside_0 Reliability
----------- Temp_Inside_2 Reliability
Mean Reliability

0 8 10 15 20 25 30
Time (Minutes)

Fig. 4. The mean reliability and the reliability of two
sensors. Sensor Temp_Inside_0 has a defect.

The defect of the sensor Temp_Inside 0 is
clearly visible and detectable in Fig. 4.
Especially if one looks at the distance between
the reliability of sensor Temp_Inside_0 and the
mean reliability over all sensors. In Fig. 4, a
change of the reliability of sensor
Temp_Inside 2 is also visible, compared to the
results in Fig. 3. This is due to the calculation of
the reliability: As the sensor values of sensor
Temp_Inside_0 change, the reliability of other
sensors may change, too.

Conclusion and Outlook

This paper presents a way to generate a
consistency based reliability value for sensors.
The approach has been embedded into the
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sensor fusion model MACRO. It has been
demonstrated that this is a valid approach to
detect sensor defects.

In the future, a more detailed look onto more
complex scenarios might be of interest. The
defect of multiple sensors should be
researched, for example.
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