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Abstract

MEMS sensors are individually calibrated to reach a high sensing accuracy. For calibration certain
measurement points are selected as reference and used to calculate the parameters of a calibration
polynomial function. To minimize the calibration costs, MEMS sensor calibration should be performed
using as few calibration points as possible. We propose a calibration approach which gives good
accuracy with less measurement points. The approach combines a systematic calibration method with
statistical parameter estimation, to find appropriate measurement points for calibration and minimize
the number of calibration points. An experiment with a set of commercial barometric MEMS pressure
sensors validates the proposed method for MEMS barometric pressure sensors.
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Introduction

MEMS sensors are used for many different
sensing applications. For some applications, it
is necessary to compensate the cross
sensitivities e. g. to temperature. Sensor
calibration techniques are used to compensate
cross sensitivities and nonlinearities [1-5]. An
overview of sensor calibration techniques is
given by [6]. In [6] model based and model free
calibration methods are distinguished. Model
free methods use a cost function and a
optimization method like the Nelder-Mead
simplex algorithm.

Model based calibration methods can include
cross-sensitivity, sensor nonlinearity and noise
suppression in a model based on
measurements or physical considerations. It
relies on polynomials or differential equations,
fitting measurement results to a given
measurement reference.

In this paper the subject of investigation is
model based calibration using polynomials.
This is a widely used method in calibration of
low cost MEMS sensors [3,4]. The calibration
approach presented here combines a
systematic methodology for finding calibration
points, presented in [7] and [8], with process
statistics to minimize measurement points
needed for calibration and at the same time
maximize the calibration quality for a calibration
polynomial choosen.
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Polynomial calibration

Polynomial calibration linearizes sensor output
using a linear process model

Yref=xp+£a (1)

where vy, iS a vector of sensor reference
values measured, X is a matrix of functions of
sensor raw values, B is a vector of calibration
parameters and € is a calibration error term.
Choosing a simple second order polynomial
calibration with only one parameter leads to a
calibration model

y =By + Bix+ Bx". (2)

The model error

M

2
Viefi = By = Bix; — Box;

& :b/ref,i — )i ‘ =
Vie(l,N)

(©)

is minimized by using least squares on the
quadratic norm of € € RY for all N
measurement points for calibration, where y,qf
is the reference value for -calibration. To
determine a unique analytic solution for Eq. (3),

= 3 independent measurement points are
needed.

Choosing measurement points

The following scenario considers that there are
M measurement points available for sensor
calibration and M > N. As only N points are
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needed to calibrate a sensor with a polynomial
of order O = N — 1. One can now choose,

which measurement point tuple t out of K = (,f)

possible options is taken for sensor calibration.
In [7] and [8] we suggested to calculate the
calibration error for all K calibration options and
then select

t* > min(g, )VkeK . (4)

This systematic calibration point selection
method is limited by the amount of entries in K.
Having more than one independent variable to
test against (temperature, strain, pressure,
humidity etc.), with several conditions for each
variable, the task of calculating all possible
measurement point variations can lead to
computational problems, as the computation
time is a limiting factor for this approach.

Calibration procedure

For a given set of calibration reference
measurement points M and a one dimensional
polynomial

Yy :ﬂo+ﬂ1x+"'+ﬁN—1xN_]7 )

with N < M, there are K = (:') possibilities to
determine a analytic solution for the parameter
fitting problem, if the system is not
overdetermined. For every k € K the analytic
solution is calculated (Least Square algorithm,
when more measurement points than
necessary should be considered), leading to
parameter vectors (B84, B2, ..., Bx) € R In a
multi-dimensional case with each dimension
having the same order

R
y =22 8% (6)

where R denotes the number of independent
parameters used for calibration.

For each vector By, k € (1, ..., K), the root mean
squared calibration error

is used to compare each set of parameters. The
error results with the highest 99 % of all error
results are dismissed. The remaining 1 % of
best calibration error parameter sets are
investigated further.

Example
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A batch of 1000 sensors is calibrated with two
out of eight available measurement points. The
calibration polynomial y* = By + B4X; is used.

To find a unique calibration solution, at least
two measurement points are necessary to
calculate B. The polynomial parameters are
identified for each possible measurement point
combination t;, =(t,tz), i € (1,...,N), where

8
N = (J =28 possible  combinations of

measurement point values t; and t, exist. After
calculating the calibration error using Eq. (7) for
each calibration option, the worst 99 % of
calibration tuples t are discarded. For a batch of
1000 sensors, 280 calibration point tuples
remain. The results can be interpreted in a
distribution plot, as Fig. (1) shows. The value of
the measurement point is plotted on the x-axis.
In the upper plot, the first measurement point
used for calibration t; is shown. In the lower
plot, the second point t, is depicted. Taken from
Fig. (1), the probably best selection of
calibration points would be t* = (2,4).

A restriction

t—>(1,1,),1, <t ¥t,1, € R (8)

Is added to separete the calibration point
distributions in Fig. (1). In general

t=> (1,0t )t <1, <...<tyVi,.,ty €R

9)
is applied to the proposed calibration method.
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Fig 1. Distribution of best 1 % calibration points for a
batch of 1000 sensors calibrated with two
parameters and tested against 8 measurement
points.

Statistical offset correction

In industrial scale MEMS sensor production,
saving calibration points leads to significant
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time savings. Therefore, the following design
objective should be fulfilled:

Calibrate sensors with maximum linearity under
the restriction of using as few calibration points
as possible.

To do so, the proposed systematic calibration
procedure is enhanced by adding a function of
static offset values taken from measurement
statistics. An improvement of sensor readout
can be achieved, if the order of the statistical
correction polynomial is higher than the order of
the calibration polynomial used. Therefore the
correction polynomial mainly enhances a low
order calibration polynomial by adding higher
order polynomial terms, taken from statistics.
The statistical correction procedure is described
as follows:

From production, a control sample consisting of
calibrated sensors is taken to determine the
statistical correction function. Within the control
sample, the sensor’s nonlinearity is investigated
in measurements at defined conditions. After
measurement values were recorded, the mean
value of the sensor's readout values is
calculated. The error between the polynomial
fitting function of the mean sensor readout and
the reference vaules is minimized, by using
least squares approximation over all available
mean measurement values. After the
polynomial approximation is calculated, the
function identified is subtracted from each
readout calibrated. This procedure is shown in
Fig. (2). The mean readout (green line) is used
to linearize the sensor readout values (red
lines). By subtracting the identified function
from the sensor readout, the calibrated sensors
readout is linearized against a well calibrated
reference sensor. The linearization result is
depicted as blue lines.
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Fig 2. Linearization of linear calibrated sensor
readout using a statistical determined correction
polynomial of second order.

Algorithm
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Step1: define a correction  polynomial

R O-1 .
fstatic(yj) = zzai,]’y} ,Q>N, (10)

Jj=1 i=0

where Q denotes the highest order used for
calibration, a is a matrix of parameters
describing the static correction function f*g.s
and y; is the mean sensor readout value with j
€ (1,...,R).

Step 2: The unknown parameters a are
calculated by solving

min(&, .. )Vk € K, where

. (11)
yref - f;‘tatic

b

gk,stutic

Where y,r is a vector of reference values of a
well calibrated reference sensor.

Step 3:

After the correction function .. is calculated,
it can be used to correct the calibrated sensor
output with

ycorr = y;oly - f::atic(y:oly) . (12)

Application example - MEMS barometers

In this section an application example is
presented for the proposed combination of
systematic calibration and statistical parameter
correction. MEMS barometers are choosen as
an example because they have a strong
crosssensitivity to temperature and nonlinear
behavior over pressure and temperature.

Setup

The experiment investigates the influence of
statistical compensation on the avarage
pressure sensing error for 38 MEMS
barometers of the type EPCOS T5400. The
sensors are calibrated for operation at a
temperature range from -40 °C to 90 °C and
barometric pressures from 300 hPa to 1100
hPa.

Measurement data is discretized in 10 °C steps
and 100 hPa steps, resulting in a grid of 126
measurement points were recorded. A General
Electric PACE 6000 pressure controller is used
to control the barometric pressure applied to the
sensors and record the pressure reference

value Ve - Temperature is controlled by
Peltier-elements and type K thermocouples
attached within the pressurized test volume.
Measurement data is recorded in ascending

order from -40°C to 90 °C and 300 hPa to 1100
hPa at each temperature step.

497



Systematic calibration

For the example a two dimensional first order
calibration polynomial

y;aly =B, + Bixp + Byxp + Bixpxp,  (13)

is choosen, where x; is the barometers
uncalibrated temperature readout and xp is the
barometers uncalibrated pressure readout. To
determine the parameters of Eq. (13) at
minimum 4 measurement points are necessary.
The measurement points are selected using the
systematic calibration method, described in the
previous  sections. For each  sensor
investigated, the probably best calibration
option is taken from the distribution plot shown
in Fig. (3). In Fig. (3) a measurement tuple
consists  of  ((T4,P4),(T2,P2),(T3,P3),(T4,P4)),
where T (°C) is a temperature measurement
point and P (hPa) is a pressure measurement
point. The most common measurement point
combination t* = [(-10 °C, 300 hPa),( 80 °C, 300
hPa),(-20 °C, 1100 hPa),(70 °C, 1100 hPa)] is
used in the following to calibrate the MEMS
barometers.
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Fig 3. Frequency of best calibration options for 38
MEMS barometers calibrated with a first order
polynomial (x values are tuples
((T1,P1),(T2,P2),(T3,P3),(T4,Ps), where T denotes
temperature in °C and P is barometric pressure in
hPa).

Statistical linearization

After all barometers are calibrated using t* they
are tested against all 126 measurement points.
As described in the section before, a statistical
correction function is calculated using the least
square approximation from Eq. (11). A
polynomial of order two in pressure and in
temperature is used as statistical correction
function.

A comparison between the uncompensated and
the statistical compensated sensor calibration is
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made. In addition, another comparison is made
between the statistical compensated sensors,
calibrated with a four parameter first order
polynomial + statistical compensation, and nine
parameter second order in temperature and
pressure polynomial calibrated sensors. This
second comparison is intended to show, how
much worse the statistical estimation of a
second order polynomial calibration s,
compared to a second order polynomial
calibration with measured values.

The comparison is depicted in Fig. (4). In the
upper plot the first order polynomial calibration
is compared to the statistical compensated
calibration. Both calibrations require 4
measurement points, if statistics are available.
In the lower plot a second order polynomial
calibration is compared to the first order
polynomial calibration with statistical
compensation. Here the second order
calibration requires 9 measurement points,
compared to 4 measurement points for the
statistical compensated calibration. In both plots
the measurement temperature is used as x-axis
and the mean error over pressure range is used
as y-axis. Uncompensated calibration is marked
gray and compensated calibration is marked
red. The vertical lines depict the spread of the
mean error, as 38 sensors were investigated.
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Fig 4. Statistical linearized sensors (red) show less
measurement error than first order calibrated sensors
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without compensation (upper plot, in gray), and
slightly more measurement error than second order
uncompensated sensors (lower plot, in gray).

As shown in Fig (4), the statistical
compensation results in an average pressure
error of 9.04 hPa over full pressure and
temperature range (avg-spec-error) specified.
Compared to the initial avg-spec-error 19.65
hPa of a systematically calibrated barometer,
this is a improvement of more than a factor two.

Comparing the avg-spec-error of the
compensated first order calibrated sensor with
the avg-spec-error 6.17 hPa of the second
order calibrated barometer, the compensated
sensor performs more than 50 % worse. But on
the other hand, less than half of the second
order calibration’s measurement points are
required to calibrate the statistical compensated
MEMS barometers.

So for the barometer example, the design
objective of calibrating with maximum linearity
using as less as possible measurement points
for calibration is met by using a combination of
systematic calibration and statistical parameter
estimation, with a little trade-off in sensor
linearity.

Concluding remarks and outlook

For a MEMS barometer example, it is shown
that sensors can be calibrated well with a
systematically determined calibration
polynomial in combination with a statistical
nonlinearity compensation. A method for
statistical estimation of a calibration offset
function is introduced. The statistic
compensation method is applied to sensors,
which were calibrated with polynomials using as
few measurement points as possible. The
probably best measurement point combinations
for calibration were determined with a
systematic approach.

The method is limited to low order polynomials
for computational complexity issues. It is
intended to apply the method to other types of
MEMS sensors like humidity sensors and
gyroscopes.
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