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Introduction 
The introduced thick-film sensor determines the oxygen partial pressure by measuring the thermopower 

over an oxygen ion conductor. The measurand is a voltage, which means that the sensor signal is 

independent on geometry. That is advantageous for long-term stability because the influence of aging 

effects like cracks or sintering is low. Another advantage of this method compared to the measuring of a 

Nernst voltage (e.g. in a !-probe) is that no reference atmosphere is needed. So, the sensor setup can be 

designed easier. 

In the proposed sensor set-up, a temperature gradient is applied over an YSZ thick film, and the resulting 

thermovoltage Vmeas is measured between two platinum electrodes. If the temperature difference "T is 

known, the thermopower (also known as Seebeck coefficient) of the YSZ-based thermocell, !,can be 

determined: 

T"
V

!! meas
Pt !"           (1) 

Here, #Pt denotes the Seebeck coefficient of the electrode material. 

Since # depends on the pO2 of the surrounding gas atmosphere [1], the oxygen concentration can be 

measured. 

 

Experimental 
The sensor was prepared in thick-film technology, similar to the method presented in [2], where an 

electronic semi-conductor was used as the gas sensitive phase. Fig. 1 shows a top view. The gold and 

platinum electrodes form two thermocouples to measure the temperature difference "T. The 

thermovoltage of the cell is mesured between the two platinum leads. The Pt/YSZ cermet electrode 

promotes the equilibrium between the YSZ film and the gas phase. The temperature difference was 

achieved by a screen-printed platinum heater on the backside of the sensor to which a sinusoidal voltage 

was applied. Between the sensor and the heater, a platinum film is applied that serves as an equipotential 

layer (see Fig. 2). This equipotential layer minimizes electrical interferences as shown in [3]. 
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Fig. 1: Top view of the sensor setup 
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Fig. 2: Sensor set-up 
 
 
For sensor testing, the sensor was mounted onto a sample holder and inserted in a tube furnace to reach 

the measuring temperature. Different O2/N2 ratios were applied to adjust a defined oxygen partial 

pressure, pO2. For cross sensitivity tests, a variety of other gases were added. 

 

Results and discussion 
The measured thermovoltage Vmeas as a function of the temperature gradient "T is shown in Fig. 3 for an 

oxygen partial pressure of 0.1 bar. For each pO2, 200 measurement points are plotted and fitted by linear 

regression. The slope of the fitted graph is directly proportional to the Seebeck coefficient ! at this 

particular oxygen partial pressure. 
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Fig. 3: Measured thermovoltage for different temperature differences 

 at T = 700 °C and pO2 = 0.1 bar 

 

The oxygen sensor characteristics of the thermoelectric sensor device at 700 °C is presented in Fig. 4. 

Each point in this curve was calculated from the slope values at one specific pO2 as described above. It 

can be seen that the sensor characteristic is semilogarithmic as expected from literature [1]. 
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Fig. 4: Sensor characteristic of the YSZ film at T = 700 °C 

 

The cross sensitivity to other gases (CO, CO2, NO, C3H8, H2 and water vapour) was low, as shown in [4]. 

Furthermore, the temperature dependance of the thermoelectric sensor was investigated. As can be seen 

in Fig. 5, the sensor signal is nearly independent of the temperature in the investigated temperature 

range. This behaviour is expected from literature, where only a very small temperature dependence of the 

thermopower of YSZ was observed [5]. 
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Fig. 5: Temperature dependence of the thermopower for two different oxygen partial pressures 

 

Conclusion 
The introduced thermoelectric sensor, based on YSZ, was successfully operated as an oxygen sensor. Its 

main advantages are a very low cross sensitivity to many other gases and a negligible temperature 

dependence of the sensor signal. 
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