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Abstract:

Human Motion is a highly variable and multidimensional form of displacement and rotation series in
space performed by multiple parts of a moving body, i.e. different muscles, bones and joints working
together. As adult humans have mastered to optimize different movements in early childhood (learning
from other people and/or from own mistakes), these movements seem obvious to them in everyday
life and hence evoke no need for further query or perfection. In professional sports or in applications of
rehabilitation and advanced training a reliable possibility of computer-assisted motion analysis and
validation can be a key for optimized training procedures and success measurement. The present
work shows the latest research results performed at the CCASS aiming for providing a framework for
reference-less human motion analysis and validation using low-cost inertial motion sensors and a
light-weight, full-body mutli-sensor suit. The developed algorithms base on the theory of Hidden
Markov Models and on stochastical modelling of human motion using Markov chains. In the present
paper the motion recognition concept will be explained as well as the model definition, the feature
selection and the validation results will be discussed. Ultimately, impressions from the sensor suit
development and the future work will be given.
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Introduction

Aiming for a novel and low-cost computer-
assisted motion monitoring and optimization
concept, the present work starts from the idea
of dealing with human motion as a series of
displacements and rotations performed by a
moving body. In a more detailed consideration,
motion is a holistic concept consisting of
different individual components which take part
in performing a specific desired action. Being
able of identifying these components as well as
any failure or disturbances in an observed
motion sequence could be employed for highly
efficient motion guidance and optimized training
for several applications given in professional
sports, medicine, health care and any other
conceivable use case.

The current state of the art in full-body motion
recognition is mainly dominated by machine
vision and marker-based systems. Especially
marker-based approaches can offer a highly
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accurate motion capturing but they also suffer
from several drawbacks, s.a. shading effects,
additional infrastructure and a high installation
effort. An elegant approach to generate motion-
sensitive measurements without the need of
external signals or devices can be provided by
inertial navigation systems.

Inertial Navigation Systems

The principle of inertial navigation systems
(INS) is based on the measurement of motion
using the inertia of a sensor-integrated mass in
the case of its acceleration. INS are generally
capable of measuring object motion without
needing neither external signals or aiding
infrastructure and can be realized using each
three turn rate and acceleration sensors
forming an orthogonal assembly in the three-
dimensional space. Having the sensitive sensor
axes in the directions of a Cartesian axis frame,
it is possible to measure any force acting on an
observed object in rotational or linear direction
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and hence to cover all of the six degrees of
freedom a moving body can have in three-
dimensional space (cf. figure 1).
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Fig. 1. Schematic representation of inertial motion
measurement using an orthogonal assembly of turn
rate and acceleration sensors

A decisive challenge given for low-cost INS in
motion tracking and recognition applications is,
that micromechanical inertial sensors suffer
from bias errors of which especially the random
part can’t be compensated trivially. This results
in a loss of accuracy over time due to the
numerical integration of biased acceleration and
turn rate signals, causing rapidly growing
navigation errors. As the velocity, position and
turn angle values are only accurate over short
periods of time, low-cost INS are regarded as
short-term stable systems [1,2]. The main task
in the present approach is therefore given in
finding a way to recognize and classify motion
while preventing numerical integration of low-
cost INS signals. The result shall be applied for
human motion recognition through using
multiple low-cost INS operating simultaneously
inside a full-body multisensor suit (cf. figure 2).

Inertial
® measurement
unit

Fig. 2. Concept of a full-body multisensor system
containing twelve inertial measurement units for
reference-less three-dimensional motion recognition

Motion recognition

The present motion recognition concept
comprises an algorithmic framework consisting
of several signal processing and recognition
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algorithms and a user interface consisting of an
inertial sensor suit and a data acquisition
software interface. The signal processing
comprises a feature acquisition part, a motion
model definition and optimization part and a
final part for generating the recognition results.

Motion modelling

One of the most known applications of
modelling “hardly observable” processes aiming
for deriving possible explanations for their
nature using the process outputs only is given
in the automatic recognition of human speech.
The present work tries to benefit from the
experiences collected in the speech recognition
segment and aims for treating motion-
generated sensor measurements using the
same techniques as for speech signals.

The idea applied in the present approach
regards acceleration and turn rate signals
generated by a motion process as outputs
produced by a natural process, which itself
can’'t be observed directly using low-cost INS.
This is the same for speech recognition, as
spoken sounds can be sensed well, where the
text responsible for their generation stays
“hidden”. Next to speech recognition, explaining
hardly observable processes using the outputs
has gained high importance in many modern
applications, e.g. in the weather forecast, stock
market or genetic research [3].

Powerful mathematical tools for modelling
hardly observable processes can be obtained
from the theory of Hidden Markov Models
(HMMs). HMMs can be understood as a
mathematical representation of a finite state
machine, of which the state transitions over
time depend on probabilities instead of absolute
conditions. In an HMM, the states usually
correspond to a specific instant of time a
process of interest produces an output, that can
be sensed using an appropriate measurement.

Both the transitions between the states over
time as well as the production of outputs with
each new transition correspond to well-defined
probabilities, making an HMM generally
describing two  simultaneously  occurring
stochastic processes [4-6]. Moreover, an HMM
is always subjected to the Markov property,
meaning that a future system state is regarded
as conditionally independent of the time as well
as of any past state, provided that the current
system state is given (1st order HMM is
considered, cf. equation 1, [4-6]).

The definition of the probability connecting two
system states over an instant of time can be
defined by equation 1. Next to this definition it
must be respected, that all forbidden transitions
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are assigned to a zero probability and that all
outgoing transition probabilities of a single state
must sum to one.
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The second stochastic process described by an
HMM covers the relation between an observed
output and its probabilistic subjection to the
generating state. Treating this mathematically
can be significantly simplified, if the variety of
observable outputs can be limited to a finite,
discrete number, which in the original process
maybe of continuous nature, i.e. their number
can be unlimited. The dependency between the
system states and the observable outputs, the
emission probabilities, can then be described
by equation 2. It can be said, that a system
going through a certain sequence of states over
time must produce a certain sequence of
observable outputs with respect to a precisely
calculable probability [4-6].
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Limiting the number of the system outputs
requires an appropriate discretization algorithm.
The final number of possible outputs (also:
codebook size or alphabet) will affect the
algorithmic  accuracy as well as the
computational cost. Therefore, a compromise
must be found in order to guarantee sufficient
output differentiability while keeping the
alphabet size preferably small.

The discretization technique applied in this
approach is based on the Euclidean distance
method (cf. equation 3, [7]). Moreover, the
decision was made for an output alphabet of 26
equally distributed discrete unit vectors pointing
to a number of representative directions in the
three-dimensional space (cf. figure 3). As a
supplementary output, the vector magnitudes
were included in the form of a discrete
magnitude level scale (4" feature, cf. results).
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The motion recognition concept is realized by
defining a number of independent HMMs, each
observing one of the inertial measurement units
inside the multisensor suit. Furthermore, these
models are redefined every time the motion
type is changed, i.e. another application use
case is selected.

For the hand wrist measurement unit in the
sample use case of a handball throw the
corresponding HMM (cf. figure 4) comprises
five motion states referring to the stages of an
ideal hand wrist motion sequence (cf. figure 5).
As the same technique can be repeated for an
unlimited number of measurement units inside
the sensor suit, the present article will
concentrate on the hand wrist HMM.

Fig. 3. Reference vectors defining the quantization
codebook

After initializing an appropriate HMM (cf.
equations 4,5, [4-6,8]) for a selected
measurement unit and motion type, it is
necessary to provide a sufficient amount of
motion patterns performed as perfectly as
possible in order to optimize the model
parameters for the recognition quality required
by the user. While the most classical HMM
approaches concentrate on using a large
number of data sets in order to reach best
possible optimization results, the present work
presents the alternative approach of single
sample training (cf. section “Single sample
training”).
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Fig. 4. Straight-forward HMM for the handball use
case and the hand wrist sensors [4-6]

817



a;; = 0fiirallej <iundj=i+1 (@4

1 .
B =21, 1<j<N,
1<k<M ©)

Acceleration Throw-out Deceleration

Initial Position Draught

Fig. 5. Five stages representing the throwing hand
wrist motion

The model optimization (also: training) can be
performed efficiently using well-known and
recognized algorithms. One of the most known
approaches lies in the expectation maximization
technique presented by Baum et al. [9], which
requires a number of sub-algorithms for the
calculation of different important probabilities
inside a given HMM. The first and most
important calculation is the probability for a
model to generate a given observation
sequence and can be calculated using the
forward algorithm summarized in the equations
6 and 7. The forward algorithm can be applied
to serve the model-based recognition and is
essentially required for the parameter
optimization [4-6].
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A complementary approach is the backward
algorithm, which specifies a variable calculated
backwards in time. The backward variable
provides the probability of a state sequence to
generate the observation sequence after a
specified time step and can be calculated
equivalently to the forward variable as
summarized by equation 8 [4-6].
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Finding the most optimal parameters for a
motion HMM can be reached by combining the
forward and backward algorithms using a
number of ideal motion measurements and the
initial model. The idea of Baum et al. lies in
calculating the model likelihood to generate a
given output sequence, then changing the
parameters and checking them for likelihood
improvement inside an iterative loop. It goes
back to Baum et al. that the observation
probability can be locally maximized within a
finite number of loop iterations, provided that
the training patterns and the initial parameters
were chosen properly. This method is also
referred to as Baum-Welch algorithm and is
summarized in the equations 9-12 [4-6,9].
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Model-based recognition

The observation probability calculated in the
forward algorithm is a quite qualified measure
for comparing a given motion model with an
observed output sequence, especially if only
one model comes into question. Another, more
powerful method is the Viterbi algorithm, which
extends the forward algorithm towards finding
the most likely state sequence inside the model
(cf. equations 13-17, [4-6,10]).
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Single sample training

As discussed above, most HMM approaches
rely on the presence of a sufficient amount of
training data sets, i.e. on multiply repeated ideal
motion measurements for optimizing the model
parameters. In practice, however, this is often
not the case as the time or the effort required to
generate these patterns can be high or the
availability of a person capable of performing
ideal motion prototypes can be limited, e.g.
professional athletes, a trainer, etc.

The single sample approach presented in the
present work takes advantage of the discrete
reference vectors presented before. The
quantization algorithm provides a number of
vectors, of which each can be imagined as
surrounded be a limited number of neighboring
vectors (cf. figure 6). In the present approach,
every reference vector is related to eight other
vectors by means of a minimum Euclidean
distance, so that each vector can be varied
through replacement by one of its neighbors.
Performing this procedure in each a single
segment given in motion sequence (while the
other segments stay original) allows for
generating a large number of training patterns
derived from only one true ideal motion sample.
While realizing a certain amount of desirable
model tolerance, the effort required for the true
data generation stays small and the model
stays optimally trainable.

Sequenz | +1

Sequenz [+2

‘ Segment 1 Segment 2 Segment 3

Fig. 6. Single sample training concept
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Multisensor suit

The main user interface for the motion
recognition is designed to be a close-fitting, full-
body sensor suit in which a specific number of
individually operating inertial measurement
units are be integrated. As the measurement
units developed in the present work don’t
exceed the size of 2 x 4 cm, the final sensor
network can be integrated into small, invisible
pockets inside the suit while being able of
wireless communication with both each other as
well as an external processing computer. As a
result, the final application is independent of
additional infrastructure or installations as well
as undisturbed by hardware or cables inside the
suit (cf. figure 7).

Fig. 7. Multisensor suit for the motion recognition

System Validation

In order to validate the present system stability
and reliability under authentic conditions, the
decision was made for a real motion capturing
work shop with professional athletes. The study
participants were equipped with each seven
inertial measurement units all over the body, in
order to show, that the model-based recognition
can be performed for all components of a full-
body motion, i.e. the number of measurement
units is unlimited.

The participants were asked to repeat certain
motion use cases for each a typically wrong
performance and for the motion pattern they
would regard as ideal. For the hand ball use
case referred to above, a five-state HMM (cf.
figure 4) was employed to validate the quality of
the motion patterns using the unit vector
features and alternatively the unit vectors plus
the 3D-Vector magnitude. The recognition
results for both the three and the four feature
experiments are provided in the figures 8 - 11.

Discussion and outlook

As shown by the diagrams in the figures 8 - 11,
the motion validation using the present
concepts could be performed with sufficiently
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successful recognition results. It could also be
shown, that including a fourth or more features
can help to suppress false positive samples,
resulting in a higher recognition quality.

Future developments will concentrate on further
system tests under stress conditions and on
continuous improvement of the discussed
algorithms. The usability and the feedback
generation shall also be extended and
optimized.  Moreover, current  hardware
developments aiming for extremely miniaturized
measurement units and highest possible range
of wireless data transmission will be continued.
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WRONG (fig. 11), Threshold = -10, four features

References

[1] Barbour, N., Schmidt, G.: Inertial sensor

technology trends. IEEE Sensors J. 1(4), 332—
339 (2001).

—_—

Haid, M.: Verbesserung der referenzlosen
inertialen Objektverfolgung zur low-cost Indoor-
Navigation durch Anwendung der Kalman-
Filterung. Fraunhofer-IRB-Verl., Stuttgart (2005)

Eddy, S.R.: What is a hidden Markov model?
Nature Biotechnology 22, 1315 - 1316 (2004).

Manning, C.D., Schiitze, H.: Foundations of
statistical natural language processing. MIT
Press, Cambridge, Mass (1999)

—_

—_

—_

Pfister, B., Kaufmann, T.: Sprachverarbeitung.
Grundlagen und Methoden der Sprachsynthese
und Spracherkennung. Springer, Berlin,
Heidelberg (2008)

[6] Yamato, J., Ohya, J., Ishii, K.: Recognizing

human action in time-sequential images using
hidden Markov model. In: 1992 IEEE Computer
Society Conference on Computer Vision and
Pattern Recognition, Champaign, IL, USA, 15-18
June 1992, pp. 379-385.

[7]1 Rizvi, S.A., Nasrabadi, N.M.: An efficient

Euclidean distance computation for vector
quantization using a truncated look-up table.
IEEE Trans. Circuits Syst. Video Technol. 5(4),
370-371 (1995).

[8] Rabiner, L.R., Levinson, S.E., Sondhi, M.M.: On

the Application of Vector Quantization and
Hidden Markov Models to Speaker-Independent,
Isolated Word Recognition. Bell System
Technical Journal 62(4), 1075-1105 (1983).

[9] Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A

Maximization Technique Occurring in the
Statistical Analysis of Probabilistic Functions of
Markov Chains. Ann. Math. Statist. 41(1), 164—
171 (1970).

[10] Viterbi, A.: Error bounds for convolutional codes

and an asymptotically optimum decoding
algorithm. IEEE Trans. Inform. Theory 13(2),
260-269 (1967).

820



