
	 etc2016 – 36th European Telemetry and Test Conference	 104

DOI 10.5162/etc2016/3.3

GUI Simulator for Automated Testing of Embedded
Systems

Dipl.-Inform. Andy Walter1, Dr. rer. nat. Torsten Rupp2, Dipl.-Inform. (FH) Florian Weber1
1 macio GmbH, Emmy-Noether-Straße 17, 76131 Karlsruhe/Germany

2 macio GmbH, Am Kiel-Kanal 1, 24106 Kiel/Germany

Abstract:
Software Developers for embedded systems are often confronted with the situation that development
tools are less mature than their pendants for desktop systems. During the development process in
general, and in particular for automated testing, it can be very helpful to do frequent test-runs on the
host rather than on the embedded system. Special care needs to be taken for the GUI and for low-
level components like sensors.

This paper summarizes the experiences macio made with simulators in three embedded projects. With
relatively little effort, it was possible to port bare-bone GUI applications which are based on low-level
graphics engines (bare-metal on a framebuffer devices or simple APIs like emWin) for Linux. The main
effort was the implementation of the respective low-level driver layer for the host platform, such that
the original source code used on the target could be compiled for the host platform and the resulting
binaries can now be executed on the host. Consequently, the screens of the resulting simulator are
pixel-identic with those on the target platform.

Another benefit of this approach is that building for a second platform generally improves the
robustness of the application, because it increases the probability to trigger timing-related bugs or
bugs due to side-effects which may rarely become visible on the original platform.

On the host, the required time for a build-and-run cycle is dramatically reduced compared to cross-
compilation and download to the target system. In total, the simulation typically reduces the
turnaround time from several minutes down to a few seconds. We measured built time improvements
from 6 minutes to 19 seconds on the same host. Also debugging becomes much easier and
elaborated tools like Valgrind can be used for finding memory leaks and other runtime errors.

As a benefit for sales and marketing, the simulator can be used for presenting the final application to
customers or producing screen shots for the documentation or brochures.

Also, the simulator can easily be integrated in automated test runs. Embedded devices often lack the
possibility to generate screen shots or the memory for collecting test data. The automated handling of
loading a test-program, executing it and transmitting the test-results back to the test server often is a
difficult task.

Two general strategies are possible for the integration of sensors and other components: The
communication can be recorded and played back by a simulator. Tools like CANoe provide more
comfort and allow the execution of scripts for the simulation of smarter and more complex
components. An alternative would be to only run the user interface on the host, while the non-GUI part
of the application is executed on the real embedded hardware.

The paper elaborates on the benefits and limitations of the given approaches and gives guidance on
the integration of the embedded device with the simulator.

Key words: GUI, simulator, embedded device, automated testing and documentation.

	 etc2016 – 36th European Telemetry and Test Conference	 105

DOI 10.5162/etc2016/3.3

Motivation
Continuous testing is a required measure to
ensure that the software works as expected. It
improves software quality significantly. It is
particularly important for embedded systems,
because software failures are usually
inacceptable and in some cases disastrous.
Some error classes, like memory leaks or
performance bottle necks, are much more likely
to cause problems on an embedded system
than they would on a desktop system.
Embedded systems are generally only
equipped with the resources which they need
for the particular application, and they often run
for months or even years without a restart. A
memory leak in a desktop application may
remain undetected, because the OS can swap
and the whole application is likely to be
restarted after a couple of days or weeks
anyway.

Makers of operating systems and tools for
embedded systems typically rather focus on
things like footprint and on real-time capabilities
than on comfort for software-developers. Also,
cross compilation and remote debugging are
more difficult to handle and have limitations.

While testing is particularly important for
embedded applications, it is often difficult to run
the tests on the target device. The limited
resources on the target device may prevent the
use of remote debuggers or intensive logging
which would be comfortable. Standard concepts
like the automated comparison of screen shots
with difficult, if there is no
comfortable way to communicate with the
embedded system and no space on the target
device to store those screen shots.

Testing the application on a desktop PC would
be more comfortable with this respect, but the
target device usually runs a different operating
system and even uses a different processor
architecture.

Luckily, most parts of an application is usually
not specific for the embedded system which is
was written for. Often, only very few distinct
parts really depend on the device. Especially
the GUI and major parts of the business layer
usually do not depend on the specific target
hardware and may also run on the host system.
This has the advantage that more powerful
tools may be used, e.g., for code coverage
analysis or runtime analyzing tools.
Furthermore, testing can more easily be
automated and test tools can be used.

This paper presents the experience macio
made in three embedded projects with a
respective GUI. A simulator framework was
developed to execute the software on a
standard Linux system including pixel-identic
graphics.

Base and Requirements
In order to run an embedded application on a
host system, the software must be compiled for
the host architecture. If a make generator like
cmake is used this is usually simple to do. For
hand written make files, the cross-compiler
must be replaced by the host standard compiler
in the make files.

For the GUI part, a graphics library is needed to
simulate the target graphics hardware on the
host system. We used for this SDL [1] as a thin
and fast graphics layer. SDL is an open-source
cross-platform library with basic functions for
input devices and graphics including OpenGL.
For applications which use no graphics
framework at all or some embedded graphics
libraries like emWin, SDL is a good base to
implement a simulator for the graphics backend
hardware.

Concept
In order to run the embedded application with
pixel-identic graphics on a host, the application
must be adapted at some functional level. A
good choice is the level where the graphics
data is transferred to the target graphics
hardware device. At this level, a system
abstraction layer (SAL) is inserted in the
application. Usually, this layer is very small and
only contains a small number of functions. The
layer is responsible for redirecting the graphics
output to SDL functions, which draw the GUI on
the host system screen. This low-level
approach offers the ability to use most of the
higher level embedded application graphics
functions including testing and give a pixel-
identic output on the host system.

	 etc2016 – 36th European Telemetry and Test Conference	 106

DOI 10.5162/etc2016/3.3

Fig. 1. Target system with application and the level
were the SAL was introduced.

All non-graphical functions, e.g., operating
system calls, are also redirected in the SAL to
an appropriate host function, e.g., opening a
file. If the functionality is not required for testing,
it may just be implemented as a dummy. This
approach results in a partially operating
application. E.g., sensor communication may
not work, but the correct visualisation of some
recorded or otherwise given sensor data may
be tested. For development and testing of the
GUI and major parts of the business layer,
usually none or only a few hardware dependent
functions are required. Only this sub-set must
be replaced.

Implementation
The approach of building the embedded
application for the host system was successfully
used in three different projects at macio.

1) Medical emergency respirator system: for
this device a graphical user interface was
implemented based on an external graphics
controller connected to the main system via
an SPI bus. For the simulator on the host,
the low-level commands for sending and
receiving data via the SPI bus were
replaced in the SAL by calls to SDL
functions. The graphics controller supported
different screen buffers and semi-
translucent overlay screen buffers, which
must be implemented with SDL functions to
get a pixel-identic output on the host. The
hardware buttons where implemented as
software controls in the SDL window, too.

2) Alcohol measurement device: in this
project, the graphical user interface of an
alcohol measurement handheld system with
a monochrome screen of only 128x64
pixels was developed. The application uses
emWin [2] for the graphics output. The SAL
was inserted at the level were the rendered

data from emWin was copied onto the
screen buffer. The graphics data was
redirected to SDL blit-operations in a
window on the host system.

Fig. 2. Simulator window with an example screen
of the alcohol measurement handheld application.

3) Embedded system with a complex generic
GUI for a large product family on Cortex M-
CPUs: this project was based on a domain-
specific language, which makes the GUI
easily adaptable to other products of the
same family, by just replacing the GUI
description. The project uses emWin on a
frame buffer device for the graphical
display. The SAL was inserted at the level
were the rendered data from emWin was
copied into the frame buffer.

Development benefits
With the major part of the target application
running on a Linux host system, most of the
further development work could be done one
the host including debugging and runtime
analysis. The time for an edit-compile-run cycle
was dramatically reduced from typical several
minutes to a few seconds, both because the
standard compilers of the host could be used
and the resulting binary could be started
immediately without downloading it to the target
or copying it to a memory card first. For the
largest project, the edit-compile-run cycle was
reduced from 6 minutes on the original
Windows 7 development environment with a
cross-compiler down to 19 seconds on a Linux
system on the same desktop hardware.

Besides faster development cycles, runtime
analysis is another major benefit when the
application can run on a standard Linux x86
system. Especially dangling pointers, buffer
overflows, corrupted memory, or lost resources
can be tracked and easily identified with tools
like Valgrind [3]. On a target system, this is
often impossible due to limited system

	 etc2016 – 36th European Telemetry and Test Conference	 107

DOI 10.5162/etc2016/3.3

resources (memory and CPU power) or
uncooperative processor architectures.

If performance is a critical factor, then a
performance analysis may also be done on the
host system. The results are not absolutely
comparable with the real target system, but
measurement values like counters for executed
code blocks or functions calls can be used to
find platform-independent hot-spots in the
application.

Sensor integration
If sensor data is required to execute the
embedded application, the data can be injected
into the host application on various ways. If a
field bus like CAN is used, software tools like
CANoe [4] or similar tools may be used in order
to simulate a CAN network. With a simulated
CAN device, network development of the
application can start even before the final CAN
backend hardware is available. This approach
is particularly convenient for testing product
families, when some of the devices would be
too big, too expensive or simply not available
yet.

If the application has an internal structure like a
publish-subscribe pattern for handling sensor
data and internal application state information, it
is easily possible to extend this by a simulator
connector to get and inject sensor and state
data from and into this model. The medical
respirator system uses a publish-subscribe
model and a few additional injection functions to
transmit basic sensor data to the host
application, too.

Automated testing and documentation
For automated testing, a socket interface was
implemented in the simulator framework and
the script language Lua [5] was integrated. Lua
is used for writing lightweight test scripts. The
Lua integration offers the ability to insert user,
communication, and simulator events, and for
taking and comparing screenshots of the whole
screen or regions of interest. Several use cases
for the various applications were implemented
and the graphical output of the tests was
compared with fuzzy rules with the expected
screen data. Fuzzy rules were used to limit the
overhead and complexity of the comparison
function e. g. when text in different languages is
rendered. This is sufficient for some general
rendering tests. E.g., the automated detection if
all text labels fit in the respective space and can
be completely drawn in all supported
languages.

Based on the Lua integration, a screenwalker
script was implemented to be able to instantiate

all application screens by an automated menu
navigation walk-through. Via this screenwalker
functionality, a rendering of all screens can be
ensured to test all defined fuzzy rules in one
automated test run. Furthermore, the
screenwalker can be used to generate a screen
map of all screens provided by the application.

When tests can be executed on the host, also a
code coverage analysis can be done. On the
target system, this is in many cases impossible
unless there is a writable storage device
available were the coverage analysis results
may be stored. With the host simulator,
standard coverage tools like GNU gcov can be
used to get a detailed code coverage analysis.

Besides automated tests and coverage
analysis, creating screen shots with rendered
texts in all required languages for the user
manual is in many projects a major
requirement. Doing this manually on the real
target could become a time-consuming task. By
using the pixel-identic simulator with the
automated screenshot functionality, those
screenshots can be created and updated fully
automated for all required screens and
languages.

Future work and conclusions
Executing the embedded application in a
simulated environment on the host is already a
major benefit during software development, test
and documentation. For detailed testing and for
demonstration purposes, some real sensor data
may be useful. Implementing simulator
functions which supply realistic sensor data is in
many cases a very complex task. Alternatively,
real sensor data may be collected from a
connected target device during the test run and
then sent to the simulator software on the host
via a network connection. This would also allow
remote control of the embedded device for
debugging as well as for demonstration
purposes.

Using a simulator for the development of an
embedded application is a major benefit. The
time for an edit-compile-run cycle can
dramatically be reduced. Also, collaborate
software development with several developers
is easier now if there are not enough target
devices for the whole team. With a simulator,
testing and generating documentation can
easily be automated and a simulator is also
useful for marketing purposes to give
customers an impression of the real system.

Finally, the GUI simulator can be used to
decrease the effort and time for text translations
of multi-lingual applications. In most cases a
translation agency gets authorized to translate

	 etc2016 – 36th European Telemetry and Test Conference	 108

DOI 10.5162/etc2016/3.3

all origin application strings into different
languages. This agencies need context
information about the text placement to be able
to find suitable translations. Often, this context
information is provided by screen maps and
developer comments, which may lack of
expressiveness. The GUI simulator is able to
provide this context information by presenting
the complete application including the
navigation path and the whole screen of the
translated text. Additionally, the translation
agency can use the GUI simulator for verifying
the translated text. The look and feel of the
translated text can be displayed directly using a
dynamic translator implementation. Therefore
the translation agency is able to verify the
correctness of text placing concerning newlines
and the available space.

In the three presented projects the effort
required to develop the simulators was more
than compensated by the saved time due to
faster development cycles and easier
debugging. For future projects, the simulator
framework will be used more extensively and
building a simulator should become part of the
project offer.

References
[1] SDL: Simple Direct media Layer,

http://www.libsdl.org/

[2] emWin: https://www.segger.com/emwin.html

[3] Valgrind: http://valgrind.org/

[4] CANoe: http://vector.com/vi_canoe_de.html

[5] Lua: http://www.lua.org/

