
	 etc2016 – 36th European Telemetry and Test Conference	 93

DOI 10.5162/etc2016/3.1

An Adaptable Constraints-based Metadata Description
Language (MDL) System for Flight Test Instrumentation

Configuration
Michael Neumann1, Jessica Moore1, Satyaraj Pantham2,

Myron Moodie3, Patrick Noonan3, Austin Whittington3
1 The Boeing Company, Seattle, Washington, USA

michael.neumann@boeing.com, jessica.d.moore@boeing.com
2 Consultant, Seattle, Washington, USA

srpantham@gmail.com
3Southwest Research Institute®, San Antonio, Texas, USA

mmoodie@swri.org, pnoonan@swri.org, austin.whittington@swri.org

Abstract:
The current telemetry device provider landscape is diverse in approach and capability, and choosing

devices for a particular solution inevitably involves a mix of devices from different vendors.
Devices have differing capabilities and limitations. Each vendor offers their own proprietary
configuration toolset. In the past it has been possible for the flight test community to build system-wide
configurations at very high cost by reverse engineering business rules for existing flight test
configuration systems. In addition, technical proficiency was required by the users for every tool in this
widely varying set or risk being locked into a single vendor. Historically, the Boeing Flight Test
Computing System (FTCS) and similar systems have device rules tightly coupled into the software,
and so as device constraints change or new devices are added, significant work is required to update
and maintain the software. To solve this problem, Boeing and Southwest Research Institute (SwRI)
developed a constraints-based and MDL-centric configuration management approach. Based on this
approach, the Boeing Company has developed its own MDL based Modular Instrumentation Setup
Tool (MIST) to manage and simplify the configuration of new devices for their users. This paper
highlights the success of this approach on the 737 MAX program and discusses how constraints were
implemented, how validation occurs, and shows how the system can be rapidly updated with new
constraints based on device changes or user insight.

Key words: Flight Test Instrumentation, Constraints, MDL, XForms, XPath.

Introduction
Data acquisition devices used in onboard flight
test networks are currently supplied by
providers with their respective de facto methods
for configuration. In addition, the capabilities
and limitations of the devices is widely variable
across the spectrum of telemetry device
vendors. This often results in a complex and
time consuming effort for instrumentation setup
as users have to learn and deal with different
configuration software and processes.

Recent standardization efforts in flight test
networks provide hope for managing this
complexity. One example is the Metadata
Description Language (MDL) created by the US
DOD integrated Network-Enhanced Telemetry

project as an interoperable flight test device
configuration language and growing in use for
both commercial and military flight test
applications. An application providing a
standardized data transfer medium enables it to
interact with multiple applications serving
similar business objectives.

In this paper, we will discuss the benefits of
using MDL for configuration augmented by
multiple levels of constraints in XForms as part
of a new system that removes large portions of
the complexity and cost for adding new devices
and maintaining existing devices. The goal has
been to create a system that is vendor agnostic
and provides reusability and extensibility. MDL
and the constraints representation external to

	 etc2016 – 36th European Telemetry and Test Conference	 94

DOI 10.5162/etc2016/3.1

MDL serve as key components for creating
valid device configurations.

We will describe the constraints and MDL
backgrounds, followed by description of the
chosen constraints format. The final section will
explain the implemented Modular
Instrumentation Setup Tool (MIST) and its use
of constraints and MDL.

Constraints
A constraint is, by definition, a limit or restriction
placed on a person or thing, or on an action or
behavior. In context of a device within a Flight
Test Instrumentation system, a set of
constraints defines the limits of how the device
may be programmed to perform a specific task.
Since each vendor offers their own proprietary
configuration toolset and capabilities, the set of

be known in order to build a valid programming
file for the device.

A user of this device requires some sort of user
interface in which they can define all the
necessary inputs to build the programming file.
Constraints on these inputs may be simple field
validations, such as a set of allowable values or
upper and lower limits. There may also be more
complex constraints in which values entered in
one or more fields affects the constraints on
one or more other fields.

In addition to the user interface constraints,
there are typically some parameters which the
device requires but which the user does not
want to explicitly specify. Constraints may be
used to limit these parameters to a single value
which can be entered into the file with no user
interaction. Again these may be simple
constraints which limit the parameter to a single
value, or they may determine the single value
based on the value of other parameters.

For any given system or device, there can be
multiple sets of constraints from different
sources. The vendor will provide a set of
constraints that describe the capabilities and
limitations of their device settings. The user of
the device may want to add additional
constraints based on their own preferences. For
a system of devices, there may be additional
vendor and/or user constraints describing the
capabilities and limitations of the system.

A constraints validation system, then, must be
able to describe all of the possible constraints
of the device or system, and must be able to
validate a configuration against multiple
sources of constraints.

Similar to
Flight Test Configuration System has

historically embedded all of these constraints in
code. Any change or addition to the constraints
was costly due to the significant work required
to update and maintain the software.

Our many years of building Flight Test
Configuration Systems has shown that a
correct-by-construction approach is needed.
The correct-by-construction approach prevents
invalid configurations being created at any
level. Whether by using constraints or hard-
coded business rules, you bypass the need to
have continual communication with the device
being configured as you negotiate and validate
the programming file incrementally.

Since input is validated in real-time as the user
builds up their configuration, any invalid pieces
or new cascading requirements are immediately
made known to the user. Additionally, by using
correct-by-construction, the passing of the
completed file to the device for final proofing
becomes just a formality. This could otherwise
be a step which, stemming from some small
value change since the last pass, requires a
total rework of the programming file.

By externalizing the constraints into modular
XForms files, constraints can be easily modified
without changing the code of the configuration
system. This paper describes a method by
which these constraints files may be used to
validate a user-defined MDL configuration for a
Flight Test Instrumentation device.

Metadata Description Language (MDL)
Metadata Description Language (MDL) is a
common configuration language that describes
requirements, design choices, and configuration
information for Telemetry Network Systems
(TmNS) [1]. MDL encapsulates the setup data
of the network nodes and measurement
devices, along with their units of measurement.
In a typical flight testing computing system, the
analog and digital data acquisition units (DAUs)
are represented by the network nodes, and
various transducers and sensors are
represented by devices.

The setup information in MDL is represented in
a hierarchical style and is highly readable
through any standard XML editor, text editor or
even in a browser. Readers can easily walk
through the data tree, its nodes and associated
data. The data items are defined as elements in
terms of tags and attributes. The attributes can
lead to utilizing highly efficient search engines
or intelligent data mining agents.

Along with simplicity, MDL also comes with all
the great advantages of XML which include a
wide variety of data types. MDL can also serve

	 etc2016 – 36th European Telemetry and Test Conference	 95

DOI 10.5162/etc2016/3.1

as the single-document view for dispersed data
across multiple devices, and an MDL instance
document supports localization and
internationalization.

Except for some trivial cases, an
instrumentation setup process for flight testing
is cumbersome and may require multiple
sessions of interaction with setup systems. A
smart client is a preferable choice since it can
support the setup data to be saved temporarily
into some local data storage. MDL can serve as
an XML based data repository for holding
device configuration data in one or more offline
sessions. When the setup system is online, the
MDL configuration can be stored in the flight
test database.

MDL has another significant advantage: flight
test setup data becomes reusable. A particular
flight test setup stored in an MDL instance
document contains the content relevant to that
test process such as the instrumentation setup
and device data. This data may either be
utilized in other testing scenarios for the same
airplane, or for similar test scenarios of other
airplanes, thereby leading to a considerable
saving on time and effort.

Flight test systems contain numerous devices
that read and format data, and multiplexers that
combine and transmit data to other onboard
systems. The task of setting up these devices
becomes unwieldy if vendors supplying the
instrumentation do not conform to a common
standard. The flight test instrumentation setup
engineers and technicians have to produce
multiple data files for each of the vendor device
categories. MDL was created and standardized
by the integrated Network Enhanced Telemetry
(iNET) program to provide a single vendor-
neutral standard which promotes
interoperability between these systems,
devices, and applications which may have been
developed by different organizations and
vendors [2].

An MDL instance document represents a
comprehensive description of a given flight test
setup. This kind of a standard configuration
language enables flight testing processes to be
executed with better portability of setup data
among the flight testing systems as well as
other enterprise systems that include those that
are geographically distributed for other lines of
business. The standardization enables reuse of
instrumentation setup in other testing scenarios
with significantly reduced effort. The
standardization of instrumentation setup data
can lead to other advantages like reusability of
application tools. In the next sections to follow,
we will discuss the many advantages in using

MDL and the challenges that arise in the
development of flight test setup applications.

Constraints Combined with MDL
XML in general uses the common language of
XPath to address parts of an XML document
[3], and perform calculations and checks upon
target elements. This language is used for
defining element relationships and schema
constraints in XML Schemas, node tests and
matching in XSLT, and many other applications
along the breadth of the XML ecosystem. For
MDL specifically, XPath is used within the
schema to define uniqueness on fields and
referential constraints checking that elements
refer to the correct targets.

For the purposes of vendor and user
constraints, XPath is again used. These new
layers of constraints go beyond merely
checking that the document is valid as an MDL
file, which forces their presence external of the
MDL schema. For the application of constraints
described in this paper, these XPath constraints
were built up in XForms, another XML-based
technology made for gathering and processing
XML data [4]. XForms was chosen for its clear
separation of the validation required to check
the constraints and the presentation which
gives the result of that validation to the user, as
well as its direct use of XPath to simplify the
application of the constraints to the MDL
documents and the availability of a variety of
existing tools for processing XForms.

Vendor constraints can exist in many forms,
from logic buried deep within compilers to
information contained in user manuals to a
spreadsheet of requirements. All of these
constraints are candidates to be written in
XPath and used in a system such as MIST. Due
to the set of circumstances present at the
beginning of this project, the constraints were
not available in XForms directly from the
vendor. Consequently, the vendor constraints
files were developed by Boeing and SwRI using
knowledge of the device capabilities. We were
first provided with a list of compiler error
messages from the vendor of the device. By
consulting with the vendor and through
knowledge of the instrumentation field, we were
able to translate these error messages into
English-language descriptions of the target
constraints. From these descriptions, we could

conditions in a straightforward manner.

There are many industry-standard XML tools
that we used for editing, testing, and validating
our XML instance documents. However, a
custom tool was needed for the XForms and
constraints specific functionality we required. As

	 etc2016 – 36th European Telemetry and Test Conference	 96

DOI 10.5162/etc2016/3.1

such, we made use of the SwRI-developed
XFORGE toolkit to generate several XForms
from the MDL schema, each of which contained
the presentation layer for the desired elements

then added bindings for the XPath constraints
to the XForms model and added descriptive
error messages to inform the user of any MDL
elements and fields which did not meet the

constraints. These completed XForms were
then used by MIST to provide the constraint
validation capabilities.

A sample constraint follows in Figure 1. The
constraint encodes the English-language

ConditionParameter bounds whose values are

that the lower bound (the ConditionParameter
with a greater-than or greater-than-or-equal
sign) is less than the upper bound (the
ConditionParameter with a less-than or less-
than-or-equal sign).

Fig. 1. Constraint Example

Modular Instrumentation Setup Tool (MIST)
As part of the 737-MAX flight test program, the
Boeing Company has implemented a Modular
Instrumentation Setup Tool (MIST) for the
configuration of new flight test devices that can
be programmed using MDL setup files. The tool
works on multiple platforms (Windows, Linux),
is scalable for additional modules and provides
a vendor agnostic interface where changes to
the tool can be limited by having vendors
provide business rules in a constraints format
using XForms and XPath expressions.

Configuration was successfully provided for all
new devices for the 737-MAX test airplanes.

MDL was chosen as a vendor interface
because the first devices for which MIST
provides the programming files are able to
accept MDL files. In addition, the Boeing team
wanted to conform to the emerging iNET and
MDL standards. The tool is capable of
interfacing with vendor hardware that can
accept different XML schemas, which can also
be validated by using the XForms/XPath
constraints mechanism.

MIST uses vendor and Boeing specific
constraints to validate user input and provide
immediate feedback for any values that are not
within the constraint specified limitations.
Boeing instrumentation users are able to
configure a stack of modules through instant
feedback for the data they have entered, and
save complete or incomplete configurations for
later work. If a configuration has been
completed with no errors, and successfully
compiled by a vendor provided compiler, the
resulting MDL file can be sent to the actual
devices using the Boeing Flight Test Computing
System (FTCS).

Future enhancements will include an onboard
version of MIST that will allow users to
dynamically configure MDL devices, and a
standalone version that will provide users the
capability to work on configurations offline and
import changes back into the system.

The MIST MDL interface connects the tool to
FTCS or any other flight test system that can
ingest MDL data. For vendor devices, the tool
interfaces using programming files in MDL
format based on the vendor and Boeing specific
constraints that have been provided and are
being used during the validation stage in the
process.

	 etc2016 – 36th European Telemetry and Test Conference	 97

DOI 10.5162/etc2016/3.1

Fig.2. Modular Instrumentation Setup Tool (MIST) Logical Architecture.

Constraints based validation is at the center of
the MIST architecture and provides the means
for not having to hard-code vendor specific
business rules and to reverse engineer vendor
provided software that creates the final
configuration files for their devices.

MIST accepts constraints in an XForms/XPath
standardized format. The constraints are loaded
into a third party validation software that will
instantly verify user input which can also
include additional non-editable vendor
constraints and Boeing user and system
constraints. An MDL object model for storing
the configuration data is internally maintained
by the third party validation software, which
allows it to instantly verify user input. During the
compile and save actions from the MIST tool,
the MDL object model will be exported and sent
to the vendor software or the FTCS database
as a MDL data stream or physical file. Updating
any existing constraints will be performed by
the vendor or Boeing user in the appropriate
constraints file. Only the addition of new
constraints that include an update to the MIST
user interface will involve new coding.

MIST opens in a Web browser and configures
stacks with varying numbers of modules. The
user interface contains XForms segments that

allow the third party validation software to
display components that are constrained in
addition to non-constrained components that
display information from the FTCS database.
Users interactively validate their data using the
vendor and Boeing provided constraints and
receive instant constraint validation errors in the
user interface for their selected input (Figure 3).

Fig. 3. Instant Constraint Validation

Boeing instrumentation users configure a stack
by airplane and test number. Measurements
can be added to channels for each module, and
measurement properties can be modified on
different panels with the application providing
instant constraint validation. Figure 4 shows an
example user interface with proprietary
information having been replaced with generic
data.

	 etc2016 – 36th European Telemetry and Test Conference	 98

DOI 10.5162/etc2016/3.1

Fig.4. Modular Instrumentation Setup Tool (MIST) Screenshot.

The vendor software is called during the
compile process and back-annotates additional
vendor specific data to the MDL file that gets
returned to MIST and stored in the MDL object
model inside the third party validation software.
At any time, the current configuration can be
saved to the FTCS database as MIST data and
the complete MDL file for further loading on a
vendor device once the validation process
returns no configuration errors.

Conclusion
An adaptable constraints-based MDL system
for flight test instrumentation configuration has
been successfully implemented by Boeing for
the 737-MAX flight test program. Constraints
allow for faster integration of new hardware
devices since business rules are no longer
hard-coded and can be directly provided by the
vendor. The end user experiences operational
efficiencies through early validation and a
process that can guarantee a valid
configuration file for the devices in use. The
responsive system avoids mistakes and
provides an easier learning curve for new
instrumentation engineers.

Constraints provide maintenance benefits by
allowing engineers and vendors to only modify

a constraints file without developers having to
write additional code, except in situations where
there are new user interface changes required.
This also allows Boeing engineers to work their
own user constraints and can lead to a future
system where engineers can be allowed to
directly create programming files for new or
modified constraints

The use of XForms to capture the constraints
has been shown to provide the flexibility
necessary to describe the constraints of
complex network flight test instrumentation.
When combined with MDL this provided a
capable and vendor independent device
configuration approach that should scale to a
wide variety of future devices.

References
[1] iNET system Management and Configuration,

ETC 2010

[2] Metadata Description Language: The iNET
Metadata Standard Language ITC 2009

[3] https://www.w3.org/TR/xpath/

[4] https://www.w3.org/TR/xforms/

