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Abstract 

In this paper, a concept for inertial position tracking of flow following sensor particles based on data 

fusion of inertial sensors is presented. The employed data fusion technique is quaternion based and 

uses an extended Kalman filter algorithm. A generalized sensor system kinematics has been 

developed to test the filter algorithm where three data conditions have been considered. Eventually, 

first simulation results are compared which shows the performance of the filter regarding sensor drift 

and noise are being discussed. 
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Introduction 

Increasing the efficiency of industrial 

processes is a long-running demand in terms 

of profitability and environmental sustainability. 

A specific problem is monitoring and control of 

conversion processes in large vessels. Such 

are to be found, e.g. in bio-chemistry, food 

production, minerals processing and biogas 

fermentation. Such often occur in large vessels 

and there typical problems are optimal 

homogenization of mass and heat by mixing, 

optimal suspension of solids, optimal 

volumetric mass transfer and reaction, efficient 

gas supply and others. Performing 

measurements in large vessel is often 

problematic or even not feasible.  The concept 

of sensor particles has been 

developed in HZDR to investigate running 

processes in large vessels, such as 

biogas fermenters, bioreactors and activated 

sludge tanks. These sensor particles 

continuously collect spatially distributed hydro- 

and thermodynamic process 

parameters using autonomous sensor 

technologies. Sensor particles are made up of 

robust capsules consisting of integrated 

electronics with sensor elements for basic 

physical parameters, microcontroller, memory, 

battery and a buoyancy control unit. 

Currently the sensor particle is equipped with 

an inertial measurement unit (IMU) consisting 

of integrated miniaturized sensors for 

acceleration, rotational rate and magnetic field, 

additionally the sensor particles also have 

sensors for ambient temperature, immersion 

depth as a function of hydrostatic pressure. 

The concept is also open to incorporate 

complementary miniaturized sensors, for 

example, sensors for pH and dissolved 

oxygen [1]. This work is focused on 

development of data fusion algorithms for 

position tracking of sensor particles using the 

available data from the integrated sensor 

elements. 

Development of algorithms for integrating the 

gyroscope and accelerometer data, to estimate 

the attitude and position, gained increasing 

attention due to the various applications of 

autonomous systems. Studies related to 

positioning of robots [2], unmanned air vehicles 

[3], and underwater vehicles [5] have been 

performed. Also filtering methods using 

quaternion and Kalman filter have been 

applied in this context [6]. 

The uniqueness of this approach in application 

is, that the use of active position tracking or 

localization using radio waves or acoustics are 

not yet possible. GPS or acoustic techniques 

do not work well at typical process conditions, 

as scattering and attenuation of signal carriers 

in the process fluids limit the signal 

propagation too strongly. Moreover, the upper 

hand over these techniques is the availability 

of the a-priori knowledge, such as the use 
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of magnetic markers or the structural 

knowledge of the container, which can be used 

to make precise position estimation. 

Theoretically, single and double integration of 

the gyro and accelerometer outputs may 

provide velocity and position information. But in 

practice the non-linearity and noise present in 

the sensors make the trajectory 

estimation effective for only a short period of 

time. The concept of data fusion, however, 

provides better control via noise models and 

gives a more precise estimation [3]. 

The detected position of a sensor particle in a 

time instant is in principle the fusion of 

data from gyroscope (rotational rate) and 

accelerometer provided an a-priori 

knowledge of the initial position. With the help 

of quaternion components to represent the 

orientation of the sensor particle and the 

magnetic field signal from the magnetometer, 

data fusion can be 

achieved to detect the position of the sensor 

particle by developing filter algorithms. 

Generally for the purpose of data fusion from 

multiple sensors, statistical filter 

algorithms are developed and the choice of the 

type of filter depends on the level of output 

efficiency required at application level. For this 

reason, the choice of a Kalman filter is 

sensible in our case. However, as we are 

dealing with an 

inertial sensor system, the equations of the 

system or the data mixing from the 

sensor is nonlinear. Thus it is not wise to use a 

linear Kalman filter. Instead, the 

idea is to use two other well-known versions of 

the Kalman filter, the EKF (Extended Kalman 

Filter) and UKF (Unscented Kalman Filter) [2]. 

The initial result presented in this 

paper is derived from EKF. Thus this kind of 

data fusion can give better control over the 

non-linearity and noise, which is always 

present in the system. 

The goal of this study was to provide a system 

model that uses an extended Kalman filter 

algorithm to fuse sensor data using a precise 

noise model to estimate the position of sensor 

particles. 

EKF Model for Inertial Position Tracking 

In principle, the filter fuses data from a variety 

of sensor subsystems into a consistent, 

smooth estimate of the state of the sensor 

particle. The extended Kalman filter is nothing 

but a non-linear version of the typical Kalman 

filter and can provide a better estimate of the 

state vector by taking into account the non-

linearities present in the system. In the 

extended Kalman filter the system dynamics 

and the measurement function is linearized 

around the expected state and then the 

Kalman filter is applied [2,3]. For the 

implementation of EKF, a state space model of 

the sensor system has to be developed, which 

will be a non-linear function of the available 

outputs of the integrated sensors as shown in 

figure 1. This state space function is 

represented as the unobserved state vector, 

xk, and is predicted over time using the 

acceleration, a, rotational rate, ω, from the 

gyroscope and quaternion q. This can be 

achieved by propagating the state vector 

through a prediction function or state 

propagation function. The error covariance, Qk, 

is predicted using the state propagating 

function and a state matrix, A, can be derived 

with in the function for the purpose of 

propagation. The state vector is rotated using 

the rotation matrix, Rb
n
, which is derived from 

the quaternion components. The observable 

measurements of each sensor are 

implemented into a non-linear measurement 

function and this is used to predict the 

measurement of the sensor and also an error 

covariance, Rk, of the measurement along with 

the measurement matrix, H. By making use of 

the error covariance of the predicted state and 

the measurement, the Kalman gain is 

calculated. The predicted state vector and 

measurement vector along with the Kalman 

gain is then used to update or correct the state 

vector and the error covariance. This process 

of prediction and correction continues in every 

time step. This is illustrated in figure 1. 

State Space Model of the Sensor System 

The state space model is defined using the 

following nonlinear equations, 

           xk = f(xk-1, uk-1, wk-1)                   (1) 

           zk = h(xk, vk)                       (2) 

where the unobserved system state vector, xk, 

develops over time as a nonlinear function of 

the previous system state xk-1, control input,  
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uk-1, and process noise, wk-1. 

The sensor measurements zk are a nonlinear 

function of the system state in addition with 

measurement noise vk. The process and 

measurement noises are assumed to be 

normally distributed white noise with zero 

mean and covariance Qk and Rk respectively 

[2-4].  

 

Prediction and Measurement Stage 

To predict the position of the sensor particle, 

the variables that are taken into account are 

the quaternion components, represented by 

the rotational rates, ω, and the velocity, v, of 

the sensor particle in body frame. The state of 

the sensor particle is represented by the 

following vector, 

               xk = [P
T
, q*

T
, v

T
, ba

T
, bg

T
],               (3) 

where P is the 3-dimensional position vector in 

the body frame, q* is the unit quaternion 

update representing the rotation of the body 

frame to the navigation frame, v is the 

translational velocity in body frame. Biases ba 

and bg are 3x1 vectors representing the 

accelerometer and gyroscope drifting biases 

along each axis respectively. Data collected 

from the IMU are assumed to be in body 

frame, that is, the sensor particle’s frame [4,5]. 

The prediction stage of the EKF predicts 

forward in time, and the acceleration and 

gyroscope data is provided by the IMU which 

contains additional parameters such as the 

biases and the gravity compensation, that must 

be taken care off. These accelerometer and 

gyroscope data are then used within the state 

propagation function. The following equations 

shows the acceleration and gyroscope data 

along with the additional parameters. 

Acceleration in body frame is affected by 

gravity, g, the drifting bias, ba, and white noise 

wa. The gyroscope data are affected by the 

drifting bias bg and the white noise wg [4,5]. 

 

         a = (ab – ba) + g + wa               (4) 

                        ω = (ωb – bg) + wg                 (5) 

 

These equations are now used for the state 

propagation function that is fed into the 

prediction stage of the extended Kalman filter. 

 

 

 

                (6) 

 

      

The rotation matrix Rb
n
 is formed using the unit 

quaternion q*. The unit quaternion is 

determined by the following method, 

                  q* = qw + qxi + qyj + qzk              (7) 

where the quaternion norm is unity and the 

components are derived from the Euler angles 

[4], 

qw = cos (φ/2) cos (θ/2) cos (ψ/2)  +  

sin (φ/2) sin (θ/2) sin (ψ/2)                           (8) 

 

qx = sin (φ/2 ) cos (θ/2) cos (ψ/2)            –  

cos (φ/2) sin (θ/2) sin (ψ/2)                        (9) 

 

qy = cos (φ/2) sin (θ/2) cos (ψ/2)  +  

sin (φ/2) cos (θ/2) sin (ψ/2)                      (10) 

 

qz = cos (φ/2) cos (θ/2) sin (ψ/2)  –  

sin (φ/2) sin (θ/2) cos (ψ/2)         (11) 

For a given set of gyroscope data, ωx, ωy, and 

ωz, the kinematic equation that represents the 

transformation from body frame to navigation 

frame is written as, 

 

 

     (12) 
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By making use of the quaternion components 

the rotation or the frame transformation matrix 

is determined by [5], 

Rb
n
 = 

 

 

   (13) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Concept of filter algorithm for inertial 

position tracking of sensor particles using EKF. 

The idea behind the development of the 

measurement function is the proper usage of 

secondary sensor data or a-priori knowledge to 

ensure that the estimated state vector in the 

process model can be corrected to move 

towards the expected state. Currently, the 

output data of the magnetometer are used for 

this purpose. The measurement model 

developed for our simulated system model is 

as following [2], 

              zk = [Rb
n
 mb Rb

n
´]

T
       (14) 

where mb is the magnetometer output in body 

frame. 

Simulation Results and Discussion 

The filter algorithm is developed around a 

simple translatory motion derived to clearly 

understand the behavior of the movement 

pattern and the EKF itself. The accelerometer, 

gyroscope and the magnetometer data have 

been developed in MATLAB® as the input 

parameters of the EKF. Initial simulations were 

performed by only having a translatory motion 

in the y-direction without having any rotation in 

any of the axis. By using the simple strapdown 

method, the results will be very noisy or will 

have significant drift that would make the 

results unusable. In figure 2, the red line is the 

result of simple strapdown integration and it 

can be seen that due to the presence of 

uncontrollable or unoptimizable noise, the 

result is drifting away from the expected one.  

 

Fig. 2: Comparison with only acceleration and 

without the effect of any rotation on any of the 

axis. 
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When this is again simulated using EKF, the 

results shows that, by precise handling of the 

noise, the EKF can correct or update the data 

close to the expected nature, as shown in 

figure 2 with the green line. 

 

 

Fig. 3: 3D positioning with acceleration in y-

axis without any rotation. 

Figure 3 shows the three-dimensional 

positioning of the simulated developed system 

with constant acceleration in y-axis without any 

rotation. It can be observed that there is a very 

small drift and added noise in the other two 

axis. These drifts and noises can be reduced 

by precisely controlling the noise parameters. 

This can be better understood from figures 4 

and 5. 

 

 

Fig. 4: 3D positioning with acceleration in y-

axis with rotation around the same axis. 

Figure 4 and 5 show the 3D positioning with 

acceleration and rotation in y-axis. From figure 

4, it can be seen that due to a less optimized 

noise parameter the trajectory drifts in the 

range of 20*10
-5

, whereas, after a small 

change in the noise parameters, the drift is 

reduced to the range of 4*10
-6

. By further 

optimization of the noise parameters, the 

trajectory can be brought even closer towards 

the expected trajectory. 

 

 

Fig. 5: 3D positioning with acceleration in y-

axis with rotation in the same axis with better 

noise model. 

 

Conclusion 

In this work, we used EKF to fuse non-linear 

data that represent the kinematics of an IMU 

and combined it with robustness tests to 

achieve smooth estimates that will be useful in 

visually challenging and degraded GPS 

environments. The first simulations showed 

that by precisely handling or controlling the 

noise parameters within the EKF algorithm, the 

drift and the noise in the estimated output can 

be optimized towards the expected nature. 

Future work will encompass exploitation of real 

sensor data in real environments using EKF. 
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