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Abstract 
Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online 
methods are applied, which require excessive calibration effort. NMR spectroscopy has a high poten-
tial for direct loop process control while exhibiting short set-up times. Compact NMR instruments make 
NMR spectroscopy accessible in industrial and harsh environments for advanced process monitoring 
and control, as demonstrated within the European Union’s Horizon 2020 project CONSENS. 
We present a range of approaches for the automated spectra analysis moving from conventional mul-
tivariate statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral 
models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). By using the benefits of 
traditional qNMR experiments data analysis models can meet the demands of the PAT community 
(Process Analytical Technology) regarding low calibration effort/calibration free methods, fast adap-
tions for new reactants or derivatives and robust automation schemes. 
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Integrated Process Design – Need for Smart 
Field Devices 
Novel concepts in the field of process engi-
neering and in particular process intensification 
are currently promoted for analysis and design 
of innovative equipment and processing meth-
ods [1, 2]. This leads to substantially improved 
sustainability, efficiency, environmental perfor-
mance, and alternative energy conversion. 

Continuous Pharmaceutical Reaction Step 
in a Modular Plant 
Compared to traditional batch processes, in-
tensified continuous production gives admit-
tance to new and difficult to produce com-
pounds (see reaction Fig. 1 as an example), 

leads to better product uniformity, and drasti-
cally reduces the consumption of raw materials 
and energy. Flexible (modular) chemical plants 
can produce various products using the same 
equipment with short down-times between 
campaigns, and quick introduction of new 
products to the market. Typically, such plants 
have smaller scale than plants for basic chem-
icals in batch production but still are capable to 
produce kilograms to tons of specialty products 
each day. 
Consequently, full automation is a prerequisite 
to realize such benefits of intensified continu-
ous plants. In continuous flow processes, con-
tinuous, auto-mated measurements and tight 
closed-loop control of the product quality are 
mandatory. If these are not available, there is a 

 

Fig. 1.  Reaction scheme: FNB: 1- fluoro-2-nitrobenzene, Li-HMDS: Lithium-bis(trimethyl-silyl)-
amide, NDPA: 2-nitrodiphenylamine. Aniline was also replaced by p-toluidine and  
p-fluoroaniline 
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huge risk of producing large amounts of Out-
of-Spec (OOS) products. 
In pharmaceutical production, the common 
future vision is Continuous Manufacturing 
(CM), based on Real Time Release (RTR), i.e., 
a risk-based and integrated quality control in 
each process unit. This will allow for flexible 
hook-up of smaller production facilities, pro-
duction transfer towards fully automated facili-
ties, less operator intervention, less down time, 
and end to end process understanding over 
product lifecycle, future knowledge, and faster 
product to market. It is also assumed to signifi-
cantly reduce the quality control costs within a 
CM concept at the same time 
Fig. 1 represents a given example of a phar-
maceutical reaction step, within two aromats 
are coupled using the lithium base Li-HMDS. 
The reaction takes place in a 5 wt-% solution in 
tetrahydrofuran. Deviations from unknown star-
ting material and reactant concentrations to-
gether with the precipitation of LiF will lead to 
severe fouling and blocking of the modules. 
Typically, metal organic reactants are difficult 
to analyze due to the sensitivity to air and 
moisture. Thus, this example reaction was 
chosen in CONSENS to develop and validate a 
compact NMR sensor to maintain an optimal 
stoichiometry during the full course of the con-
tinuous production. 

Smart Compact NMR Spectroscopy in  
Process Control 
Monitoring specific information (such as physi-
co-chemical properties, chemical reactions, 
etc.) is the key to chemical process control. 
The challenge within the project and its given 

lithiation reaction was to integrate a commer-
cially available low-field NMR spectrometer [1] 
from a laboratory application to the full re-
quirements of an automated chemical produc-
tion environment including robust evaluation of 
NMR spectral data. 
 

 

 

Fig. 2:  (a) Complete low-field NMR spec-
trum (43.5 MHz, single scan) and (b) 
aromatic region of automatically 
phased, baseline corrected, and shift 
corrected proton spectra for the lithia-
tion reaction. 

The NMR analyzer (Fig. 3, orange box) is pro-
vided in an explosion proof housing of 
57×57×85 cm module size and involves a 
compact 43.5 MHz NMR spectrometer togeth-

 
Fig. 3.  Scheme of the validation set-up for monitoring of the continuous reaction unit with the 

compact NMR sensor (orange box). The lithiation reaction (Fig. 1) is continuously carried 
out in a thermostated 1/8” tubular reactor using syringe pumps. HF NMR spectroscopy 
(upper right) served as reference. 
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er with an acquisition unit and a programmable 
logic controller for automated data preparation 
(phasing, baseline correction) as well as data 
evaluation (see below). Therefore, the aro-
matic region of the NMR spectra in Fig. 2 had 
to be chosen; representing higher order NMR 
spectra. 
In a first approach, a couple of semi batch 
reactions were performed for development of 
Partial Least Squares Regression (PLS-R) as 
well as Indirect Hard Modeling (IHM) models. 
Within these studies Li-HMDS was dosed 
stepwise to the reactants aniline and FNB in a 
batch reactor to produce spectral data material 
along the reaction coordinate. The reaction 
was in parallel observed using 500 MHz high-
field NMR spectroscopy as reference method. 
For validation purposes, the set-up depicted in 
Fig. 3 was used for monitoring of the continu-
ous lithiation reaction in a thermostated 1/8” 
tubular reactor using syringe pumps. The set-
up was matched to the reaction conditions of 
the actual plant. It was used to validate the 
PLS-R and IHM models as described later –
again using high-field NMR spectroscopy as 
reference method. A considerable number of 
continuous experiments were performed for 
validation taking account for various reaction 
conditions by individually adjusting the flow 
rates of the reagents aniline, FNB, and Li-
HMDS. 
 

Data Analysis Methods 
Die Chemometrics for the derivation of empiri-
cal models, e.g., PLS-R or PCA (Principal 
Component Analysis) is available and state of 
the art in reaction and process monitoring. 
Automated applications along the life cycle are 
still very limited. Up to now the development of 
such models requires significant experimental 
work, i.e., producing data from several time-
consuming calibration runs, ideally via experi-
mental plans (DoE). 

Physically Motivated Spectral Models 
The use of so-called First Principles methods 
along with reduction of the effort needed for 
these experiments is focus of ongoing re-
search. Making use of novel sensors, like 
online NMR, in combination with flexible data 
analysis methods like IHM tremendously pro-
mote the use of novel process control concepts 
[1–3].  
IHM model development consists of three 
steps: Firstly, Pure Component Models are 
built upon NMR spectra of the reactants and 
products (Fig. 4a). Each pure component 
model (Hard Model) consists of several Lo-
rentzian-Gaussian functions, representing the 
spectral peaks [3].  
Within that Hard Model, the ratio of peak areas 
are fixed against each other. Secondly, an 
experimental NMR spectrum is acquired and 
prepared by phasing and baseline correction 
(Fig. 4b). Finally, this experimental spectrum is 

 

Fig. 4.  Data analysis scheme for Indirect Hard Modeling (IHM) of the aromatic region (see Fig. 2) 
of the NMR spectrum. 
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represented by the given pure component 
models (Component Fitting) from the beginning 
step by iterative fit routines aiming at mini-
mized residues (Fig. 4c). Within this step, se-
lected parameters of Lorentzian-Gaussian 
functions such as position, height, or width can 
be optimized. This allows for slight line shifts or 
other non-linear effects along the course of the 
reaction, which likely occur in NMR spectra of 
technical mixtures and make IHM the method 
of choice. 
 

Fig. 5.  Calculation of pure component model 
based on spin calculations (NMR So-
lutions, Kuopio). 

Fig. 5 depicts how physically motivated spec-
tral models based on quantum mechanical 
calculations can be used to derive the pure 
component models, shown for aniline. There-
fore, line spectra from spin calculations were 
adopted by empirically fitting their line shape to 
the real pure component spectrum. 

Validation Results 
Figure 6 shows the amount of substance frac-
tions observed with the LF NMR sensor and 
the IHM methods according to a Design of 
Experiments (DoE) over an observation period 
of 6.5 hours in comparison with HF NMR data. 
In some runs aniline was replaced by p-
toluidine or p-fluoroaniline (Fig. 1, 3) in order to 
test the modular IHM approach. In all cases, 
the pure component models were exchangea-
ble and worked together with the remaining 

models for FNB. In general, all results found by 
IHM are in good agreement with results from 
the PLS-R model as well as the HF NMR ref-
erence data. 
The largest prediction uncertainties for IHM 
were found for aniline to be 5–7 mol-% relative 
(aromats), i.e., 0.25–0.35 mol-% absolute, or 
20–30 mmol L–1 concentration deviation. As 
can be seen in Figure 4a, the signals of aniline 
completely overlap with the further reagents 
causing such model deviations. IHM slightly 
overestimates aniline in the low concentration 
range during equivalent fitting of the three pure 
component models, thus, underestimating the 
product NDPA. Minimizing the residues pre-
sents a closing condition for the fitting process. 
Improving IHM for these unwanted issues is 
currently undertaken. 
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Fig. 6.  Amount of substance fractions observed with the LF NMR sensor of the reagents aniline 
and FNB and the product NDPA along an observation period of 6.5 hours together with 
HF NMR data. Grey areas represent points in time where pumps were not running due to 
cleaning or refilling. 


