Potential-Type Sulfur Dioxide Planar Gas Sensor for High Temperature Application

Izu, Noriya ^{1,2}; Hagen, Gunter ¹; Schönauer, Daniela ¹; Röder-Roith, Ulla ¹; <u>Moos, Ralf ¹</u> ¹ Functional Materials, University of Bayreuth, ² National Institute of Advanced Industrial Science and Technology (AIST)

¹ Universitätsstraße 30, 95440 Bayreuth, Germany, ² Moriyama-ku, Nagoya, 463-8560 Japan

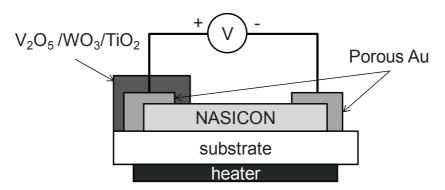
ABSTRACT

For high temperature applications, planar SO₂ gas sensors using Nasicon as an electrolyte and $V_2O_5/WO_3/TiO_2$ + Au as sensing electrode were fabricated and investigated. The sensors show a promising response at 600 °C with a sensitivity of 80-83 mV/decade in the SO₂ range from 20 to 200 ppm. The sensors show a good selectivity. Future work has to deal with an offset drift as it has been observed in repeated measurements.

INTRODUCTION

Today, coal is a very important fuel. Besides renewable energies, it will continue to play an important role through the 21st century [1]. The identified coal reserves are expected to last for 150 years, in contrast to oil and natural gas reserves which may last for only 41 and 65 years, respectively. The cost of coal is about 1/6 that of oil and natural gas. Therefore, it is predicted that coal consumption will increase by 2.5% per year in the range of 2003 to 2030 [1]. Coal, however, faces significant environmental challenges, since exhaust gas from coal combustion contains limited emissions such as SO₂, NO_x, etc. [1]. For example, the exhaust gas from coal-fired kilns includes 300-500 ppm of SO₂, or flue gases and stack gas include 500-4000 ppm and 5-10% of SO₂, respectively [2].

Thus, SO₂ sensors featuring a good durability in high SO₂ concentrations and at high temperatures are needed for SO₂ monitoring and control. Such SO₂ sensors have to be made of a very stable material. For that reason, we focused on sensors based on $V_2O_5/WO_3/TiO_2$ (abbreviated VWT), because VWT is a well-known material for ammonia selective NOx catalytic reduction catalysts (NH₃-SCR) [3-5] applied for instance for NO_x removal in coal power plants or DeNO_x processes in diesel exhausts. VWT shows a good stability in sulfur oxide-rich combustion exhausts [5]. It has already been suggested as a sensor material for ammonia sensing purposes in exhausts [6-8].


To the best of our knowledge, there are only a few papers reporting on SO₂ sensors utilizing V₂O₅ /TiO₂ (without WO₃) [9, 10] and there is no paper that involves VWT as an SO₂ sensitive material in potentialtype gas sensors, although there are many papers about SO₂ oxidation of VWT in SCR catalysts [11-16]. Liang et al. reported on bulk-type potential or electromotive force-type (EMF) sensor using V₂O₅-TiO₂ with Au electrodes and a Nasicon sodium ion conductor [9]. In contrast, in our study, we realized a planar setup for our EMF type sensors and utilized VWT with a V₂O₅ concentration of 1.5 wt% and 3.0 wt%. We also varied the electrode materials between Pt or Au and measured the EMF changes when exposed to SO₂ and/or other gases. Unexpectedly, it was found out that for the SO₂ response the electrode materials play a more crucial role.

EXPERIMENTAL

VWT powders were supplied by a commercial catalyst supplier. The V₂O₅ concentration was 1.5 or 3.0 wt% and the WO₃ concentration was ca. 8 – 10 wt%. In this study, *x*%VWT is an abbreviation that stands for the composition *x* wt% V₂O₅/8~10 wt% WO₃/TiO₂, in which *x* is 1.5 or 3.0. The VWT powders were

added into an organic binder to prepare screen-printable pastes. Nasicon powder was also added into an organic binder to prepare screen-printable pastes.

First, a solid electrolyte layer (Nasicon) was screen-printed. Then, two porous gold electrodes were screen-printed. Afterwards, one electrode was covered by an additional porous catalytically active film (VWT) which included 1.5 or $3.0wt\%V_2O_5$. The schematic setup of the sensor is given in Fig. 1. The cell can be described by:

(-) gas, Au / NASICON / Au+1.5 or 3.0%VWT, gas (+)

Figure 1. Schematic setup of the sensor.

To investigate its sensing properties, the sensor devices were placed into a test chamber with an angle of incidence parallel to the gas flow. The total gas flow amounted to either 1 or 5 L/min. The voltage between two gold or platinum electrodes was measured as an output of the sensor with a digital multimeter (Keithley 2700 series). As a base gas, compressed air was used to measure the response to SO_2 , while a gas mixture of 20 % O_2 and 80 % N_2 was used in the case of the response measurement towards other gases like CO, CO₂, C_3H_8 , H_2O , H_2 , NO, and NH₃.

RESULTS AND DISCUSSION

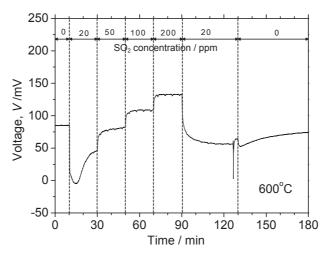


Figure 2. Response curve of the sensor using 3.0wt%V₂O₅ at 600°C

In the low temperature range (300 °C to 400 °C), the sensor shows a non-reproducible behavior, both in base gas and under SO₂ exposition. At temperatures of 500 °C or more, the voltage is stable and the

voltage increased with increasing SO_2 concentration in the SO_2 range from 20 to 200 ppm (Fig.2). The effect directly after admixing 20 ppm SO_2 to the base gas has not been understood at the moment.

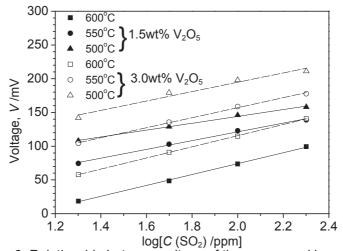


Figure 3. Relationship between voltage of the sensor and log of SO_2 concentration ($C(SO_2)$).

Figure 3 shows the relationship between the obtained sensor voltage and the logarithm of the SO_2 concentration. The slope of the line in a semi-logarithmic plot increases with increasing temperature in the range from 20 to 200 ppm. The sensitivity of the sensor with 1.5, 3.0 wt%V₂O₅ is 80 - 83 mV/decade at 600 °C. The slope of the sensors with 3.0 wt% V₂O₅ is higher than that of the sensors with 3.0 wt% V₂O₅ at each temperature. This sensitivity would be suitable for high temperature application.

The results are different to the bulk-type sample as reported in Ref. [9]. There, no information about the sensor response over 300 °C was given, and a stable response was observed at 300 °C. When we repeated our measurements, an offset shift is observed but the slope remains almost the same. This problem may be related to the strange response when SO_2 concentration changes from 0 ppm to 20 ppm. In high SO_2 concentrations (200 ppm - 5000 ppm), a decrease of the slope is observed. This means that a kind of saturation of the signal occurs at high SO_2 concentrations.

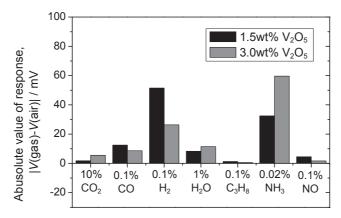


Figure 4. Response to various gases.

Figure 4 shows the results of the cross sensitivity tests. The sensors with 1.5 wt% and 3.0 wt% V_2O_5 show only little or no response to CO_2 , CO, H_2O , C_3H_8 and NO, and only H_2 and NH_3 lead to marked effects. It seems that the sensors may be selective enough for in-situ waste gas monitoring of coal combustion processes. However, the long-term signal stability needs to be further investigated.

Conclusions

In this study, we manufactured a planar type sensor with Nasicon as an electrolyte and Au and Au/VWT as electrodes. We investigated the response properties towards SO_2 and towards many interfering gases. The results and conclusions obtained in this study are as follows:

- In the low temperature range (300 °C 400 °C), the sensor showed a non-reproducible response to SO₂. At temperatures of 500 °C or more, the voltage is stable and the sensor output increases with increasing SO₂ concentration in the SO₂ range from 20 to 200 ppm.
- 2) The slope in a semi-logarithmic plot (voltage vs. log of SO₂ concentration) increases with increasing temperature in the range from 20 to 200 ppm. The sensitivity of the sensor with 1.5, 3.0 wt%V₂O₅ is 80 83 mV/decade SO₂ at 600 °C.
- 3) In high SO₂ concentrations (200 ppm 5000 ppm), a saturation of the sensor signal in high SO₂ concentrations is observed.
- 4) The sensors with 1.5wt% and 3.0wt% V₂O₅ showed little or no response to CO₂, CO, H₂O, C₃H₈ and NO. It seems that the sensors may be selective enough for in-situ waste gas monitoring of coal combustion processes. However, the long-term signal stability needs to be further investigated.

These investigations are a part of a series that studies how VWT can be used for SO_2 sensing. Whereas at the moment the long-term stability of the potential-type sensors requires further improvements, conductometric sensors using VWT as the sensitive film perform better. They can be operated at 400 °C. The resistance of VWT decreases with an increasing SO_2 concentration in the range from 20 ppm to 5000 ppm. The sensor response is linear in a logarithmic scale, but no saturation effect occurs. The long-term stability is promising and the cross-sensitivity is similar to the one as found out in this work. Further details can be found in [17].

References

- C.A. Powell, B.D. Morreale, Materials challenges in advanced coal conversion technologies, MRS Bull. 33 (2008) 309-315.
- [2] S.S. Bhoga, K. Singh, Electrochemical solid state gas sensors: An overview, Ionics 13 (2007) 417-427.
- [3] G. Busca, L. Lietti, G. Ramis, F. Berti, Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review, Appl. Catal. B 18 (1998) 1-36.
- P. Forzatti, Present status and perspectives in de-NOx SCR catalysis, Appl. Catal. A 222 (2001) 221-236.
- [5] M. Casanova, E. Rocchini, A. Trovarelli, K. Schermanz, I. Begsteiger, High-temperature stability of V₂O₅/TiO₂-WO₃-SiO₂ SCR catalysts modified with rare-earths, J. Alloys Compd. 408 (2006) 1108-1112.
- [6] D. Schonauer, K. Wiesner, M. Fleischer, R. Moos, Selective mixed potential ammonia exhaust gas sensor, Sens. Actuators B 140 (2009) 585-590.
- [7] D. Schonauer, T. Nieder, K. Wiesner, M. Fleischer, R. Moos, Investigation of the electrode effects in mixed potential type ammonia exhaust gas sensors, Solid State Ionics (2010) doi:10.1016/j.ssi.2010.1003.1028.
- [8] R. Moos, Catalysts as Sensors A Promising Novel Approach in Automotive Exhaust Gas Aftertreatment, Sensors 10 (2010) 6783-6787.
- [9] X.S. Liang, T.G. Zhong, B.F. Quan, B. Wang, H.S. Guan, Solid-state potentiometric SO₂ sensor combining NASICON with V₂O₅-doped TiO₂ electrode, Sens. Actuators B 134 (2008) 25-30.
- [10] D. Morris, R.G. Egdell, Application of V-doped TiO_2 as a sensor for detection of SO₂, J. Mater. Chem. 11 (2001) 3207-3210.
- [11] F.Y. Chang, J.C. Chen, M.Y. Wey, S.A. Tsai, Effects of particulates, heavy metals and acid gas on the removals of NO and PAHs by V₂O₅-WO₃ catalysts in waste incineration system, J. Hazard. Mater. 170 (2009) 239-246.
- [12] P. Forzatti, I. Nova, A. Beretta, Catalytic properties in deNO(x) and SO₂-SO₃ reactions, Catal. Today 56 (2000) 431-441.

- [13] J.H. Goo, M.F. Irfan, S.D. Kim, S.C. Hong, Effects of NO₂ and SO₂ on selective catalytic reduction of nitrogen oxides by ammonia, Chemosphere 67 (2007) 718-723.
- [14] H. Kamata, S. Ueno, T. Naito, A. Yukimura, Mercury Oxidation over the V₂O₅(WO₃)/TiO₂ Commercial SCR Catalyst, Ind. Eng. Chem. Res. 47 (2008) 8136-8141.
- [15] M. Kobayashi, M. Hagi, V₂O₅-WO₃/TiO₂-SiO₂-SO₄²⁻ catalysts: Influence of active components and supports on activities in the selective catalytic reduction of NO by NH₃ and in the oxidation of SO₂, Appl. Catal. B 63 (2006) 104-113.
- [16] Y.J. Zheng, A.D. Jensen, J.E. Johnsson, Deactivation of V₂O₅-WO₃-TiO₂SCR catalyst at a biomassfired combined heat and power plant, Appl. Catal. B 60 (2005) 253-264.
- [17] N. Izu, G. Hagen, D. Schönauer, U. Röder-Roith, R. Moos, Application of V₂O₅/WO₃/TiO₂ for resistivetype SO₂ sensors, accepted for publication in "Sensors" (2011).