One step synthesis of Au loaded nanocrystalline SnO\textsubscript{2} by flame spray pyrolysis technique and its stability as gas sensor material

Konstantin Zamanskiy1, Valeriy V. Krivetskiy2

1 Faculty of Materials Science
2 Department of Chemistry
M.V. Lomonosov Moscow State University, Russia
vkrivetsky@inorg.chem.msu.ru

Abstract:
One step synthesis of Au-loaded SnO\textsubscript{2}-based nanocomposites for chemical gas sensors is presented. Flame spray pyrolysis (FSP) procedure with the use of originally designed setup was utilised to obtain either pure or Au-loaded materials. Superior gas sensor properties of obtained SnO\textsubscript{2}-Au nanocomposites compared to same way prepared pure SnO\textsubscript{2} material are demonstrated. HAADF STEM microscopy was utilized to provide chemical insight into a degradation of gas sensor performance of given materials over time.

Key words: metal oxide, semiconductor, gas sensor, flame spray pyrolysis, tin dioxide, gold

Introduction
Flame spray pyrolysis procedure is currently considered to be a very promising route to obtain ultrafine porous materials on the basis of metal oxide semiconductors for chemical gas sensors [1]. The main benefits of this synthetic method among others are single synthetic stage, simplicity of precursor preparation, high rate of synthesis, good control of final material grain size, specific surface are, impurity content and homogeneity of modifier distribution [2]. This combination usually gives rise to a superior sensor performance of such obtained materials compared to samples obtained by convention multistage sol gel and impregnation techniques [3]. Gold modified nanocrystalline SnO\textsubscript{2} is a well described material for semiconductor chemical gas sensor for its high sensitivity for reducing gases [4]. However, it is usually obtained by impregnation of nanocrystalline SnO\textsubscript{2} with such precursors as water solutions of chloroauric acid or its salts with consecutive thermal decomposition [5,6]. This procedure has significant drawback as the final material gets contaminated with the Cl- or alkali metals ions. This can affect the materials sensitivity or long-term stability during gas sensor operation. Thus, a method of one step synthesis of SnO\textsubscript{2}-based Au loaded nanocomposites without contamination by other precursor component is of a high demand. Here we present this method, based on the use of Au-precursor soluble in organic solvent.

Experimental
Tin 2-ethylhexanoate has been taken as SnO\textsubscript{2} precursor, and (1,3-bis(2,6-diisopropylphenyl)-1,3-diazepan-2-ylidene)gold(I) as a precursor for gold. The SnO\textsubscript{2} precursor was mixed with toluene in 1:4 volume ratio and gold precursor was added to the solution in a calculated amount to give 0.05, 0.1, 0.2 and 0.4 \% wt in the final material. The mixture was supplied with the 2ml/min rate and atomized through spraying nozzle by 10 l/min flow of oxygen and was ignited by the flame of six concentric orifices, supported by 1:2 methane to oxygen mixture by volume. Gold free material was synthesized in the same conditions. The materials were passed through characterization via XRD, BET, TPR-H\textsubscript{2}, HAADF STEM and gas sensor test routine.

Results
Gas sensor response of synthesized materials towards 10 ppm of CO in dry air is given on the fig.1. The deterioration of sensors performance can be clearly observed for Au-modified materials during continuous work for 1 week in 50-450 working temperature range. Application of HAADF STEM analysis technique with EDX element mapping (Fig.2) allows to connect the observed materials performance drop to
increase of Au particle size from 2-3 to 15-20 nm, which causes a loss of their catalytic effect.

Conclusions

The FSP technique is a promising approach for the synthesis of gold modified SnO\(_2\) based nanocomposites for gas sensors, however, the agglomeration of gold nanoparticles at elevated working temperatures leads to a complete deterioration of nanocomposites gas sensor performance. Stabilization of gold species required in order to achieve stable gas sensor response.

Acknowledgements

The work was funded by Russian Science Foundation grant № 17-73-10491

References

