
Software in Measuring Instruments: Ways of Constructing
Secure Systems
Daniel Peters1, Florian Thiel1

1Physikalisch-Technische Bundesanstalt, Abbestr. 2 -12, Berlin, Germany
{daniel.peters, florian.thiel}@ptb.de

Abstract
In the era of the Internet of Things (IoT), the number of connected devices is expected to exceed 25
billion in the year 2020. This also concerns legal metrology. Legal metrology comprises measuring
instruments that are employed for commercial or administrative purposes or for measurements which
are of public interest. More than 100 million legally relevant meters are in use in Germany. The central
concern of legal metrology is to protect and ensure trust. For software, this also means that
applications must be stable and withstand attacks. These attacks increase in all areas where devices
are connected via an open network, i.e. the internet. Additionally, measuring instruments have evolved
into powerful universal devices with unsecure system architectures. Such IT systems, running
conventional operating systems, can be hardly secured. One solution to enforce security is by creating
a component-based architecture which modularizes the critical software parts and isolates them. In
this paper some methods are described, which can be used to achieve software separation, and
therefore enhance security and flexibility.

Keywords: B3: Informations- und Datenfusion; B4: Diagnose von Messgeräten,
Selbstüberwachung, Zuverlässigkeit; C1: Sensoren für das Internet of Things; C8: Sicherheitstechnik,
Safety and Security

1. Introduction

software separation
metrology mean? Generally, one can say that
software separation describes technical
measures that prevent non-legally relevant
software functions, which have no
measurement purpose, from influencing legally
relevant ones, which are solely devoted to
measurement.

If software separation has been implemented
fully and correctly, non-legally relevant
software components can and may be
exchanged or modified by the manufacturer
and even user, after the measuring instrument
is in commission. No conformity assessment is
necessary.

To achieve software separation for measuring
instruments under legal control, the
requirements of the WELMEC Software Guide
7.2 (W7.2) [14] should be followed; concretely,
the sections S1-S3, which formulate the
requirements for software separation. These
requirements describe the application level and
assume that the manufacturers control both
pieces of software (legally relevant and non-
legally relevant) and that they can ensure
compliance with the requirements. But if the

manufacturers have no full control of all the
software parts, the legally relevant software
needs to be protected against unknown
influences by additional measures. These
additional measures depend on the respective
hardware and software platform, e.g., support
for the separation of program and data areas,
management of the common resources, and
access to the system by the user, etc.

For manufacturers and notified bodies (NBs),
the software separation as described in the
W7.2 has also a second benefit : It helps to
decide which depth of testing for the various
software components of a measuring
instrument needs to be applied, and therefore,
reduces the expenses for modifications in
software throughout the life cycle. In general,
one can say that the primary aim of the
modularization according to W7.2 / S1-S3 is to
facilitate conformity assessment, and not
necessary to hinder unknown manipulations of
software parts.

Often the used platform of the measuring
instrument does not have mechanisms to
protect the legally relevant software part
against interference from other software
components, even if they are separated
according to the rules of the W7.2 / S1-S3.

	 18. GMA/ITG-Fachtagung Sensoren und Messsysteme 2016	 480

DOI 10.5162/sensoren2016/6.3.4

In this article different mechanisms to separate
software are named and analyzed according to
their strengths and benefits.

1.1 Outline

The paper is structured as follows: In Section
1, an introduction about the topic was given,
outlining the importance of software
separation. In Section 2, an overview of legal
metrology and especially the software
requirements for measuring instruments under
legal control are supplied. Afterwards in
Section 3, technical solutions on how to
achieve software separation according to the
WELMEC 7.2 Software Guide (W7.2) are
discussed, before more sophisticated
approaches are being described in Section 4.
In Section 5, everything is rounded up by the
conclusion.

2. Software in Legal Metrology

Measuring instruments that are employed for
commercial, administrative purposes or are of
public interest, fall under legal control. More
than 100 million legally relevant meters are in
use in Germany [6]. The majority of them are
used for business purposes, in particular they
are commodity meters for the supply of
electricity, gas, water or heat. Other examples
are counters in petrol pumps, scales in the
food sector, speed and alcohol meters. The
commonality of all these applications is that the
person executing or being affected by an
official measurement cannot check the
determined result, the parties concerned must
rather rely on the accuracy of the
measurement. Hence, the central concern of
legal metrology is to protect and ensure that
trust.

The International Organization of Legal
Metrology (OIML) was set up to assist in
harmonizing such regulations across national
boundaries to ensure that legal requirements
do not lead to barriers in trade. Software
requirements for this purpose are formulated in
the OIML D 31 document [7]. In Europe,
WELMEC is the committee to promote
cooperation in the field of legal metrology, for
example by establishing guides like the
WELMEC 7.2 Software Guide [14].

2.1 MID

Directive 2014/32/EU of the European
Parliament and of the Council [9] that is based
on Directive 2004/22/EC [8], known as the
Measuring Instruments Directive (MID), are
directives by the European Union to establish a

harmonized European market for measuring
instruments, which are used in different
member states. The aim of the MID is to
protect the consumer and to create a basis for
fair trade and trust in the public interest. The
directive is limited to ten types of measuring
instruments that have a special economic
importance because of their number or their
cross-border use. These are:

 water meters,
 gas meters and volume conversion

devices,
 active electrical energy meters,
 heat meters,
 measuring systems for the continuous

and dynamic measurement of
quantities of liquids other than water,

 automatic weighing instruments,
 taximeters,
 material measures,
 dimensional measuring instruments,
 and exhaust gas analysers.

The MID defines basic requirements for these
measuring instruments, e.g. the protection
against tampering and the display of billing-
related readings.

Each measuring instrument manufacturer
themselves decide which technical solutions
they want to apply. Nevertheless, they must
prove to a notified body that their instrument
complies to the MID requirements. The notified
bodies that must be embraced by the
manufacturers are denominated by the
member states. In Germany, for example, the
Physikalisch-Technische Bundesanstalt (PTB)
is such a notified body. The PTB is furthermore
the German national metrology institute
providing additional scientific and technical
services, which is why it achieves the
demanded technical expertise needed. In
general, the combination of technical expertise
related to the measuring instruments,
competence for the assessment, monitoring of
product related quality assurance systems, and
experience with European regulations, are
required. Additionally it is of particular
importance that the notified body is
independent and impartial.

2.2 MID Software Requirements

The WELMEC 7.2 Software Guide tries to
break down the requirements for legal
metrology software of the MID to specific
technical examples and recommendations.
Actually, the last chapter of the guide is solely
devoted to document how the proposed

	 18. GMA/ITG-Fachtagung Sensoren und Messsysteme 2016	 481

DOI 10.5162/sensoren2016/6.3.4

guidelines are mapped to these requirements.
The important MID software requirements are:

 Reproducibility of measurement results
must be guaranteed, even if handled
by different users.

Reproducibility implies that a measurement
result should not depend on the user/consumer
employing the instrument. From the software
point of view, different processes with varying
access rights performing the same
measurement should yield the same result.

 Durability of the measuring
instrument's software over a period of
time must be guaranteed. A measuring
instrument shall be designed to reduce
as far as possible the effect of a defect
(bug) that would lead to an inaccurate
measurement result, unless the
presence of such a defect is obvious.

 A measuring instrument shall have no
feature likely to facilitate fraudulent
use, while possibilities for unintentional
misuse shall be minimal.

The latter points describe the measures to be
complied to, for reducing the impact of
manipulations and bugs as far as possible.

 A measuring instrument shall be
designed so as to allow the control of
the measuring tasks after the
instrument has been placed on the
market and put into use. Software for
this control must be available.

 Software identification shall be easily
provided by the measuring instrument.

 Evidence of an intervention shall be
available for a reasonable period of
time.

The former points directly address software
requirements for verifying measuring
instruments in commission. Validating the
software identification ensures that software
was not switched or manipulated. Ancillary, an
audit trail is needed to log interventions.

 If a measuring instrument has
associated software which provides
other functions besides the measuring
function, the software that is critical for
the metrological characteristics shall
be identifiable and shall not be
inadmissibly influenced by the
associated software.

 The metrological characteristics of a
measuring instrument shall not be
influenced in any inadmissible way by

the connection to it of another device,
by any feature of the connected device
itself or by any remote device that
communicates with the measuring
instrument.

 Software that is critical for metrological
characteristics shall be identified as
such and shall be secured.

 Measurement data, software that is
critical for measurement
characteristics and metrologically
important parameters stored or
transmitted shall be adequately
protected against accidental or
intentional corruption.

These points demand a strict separation of
legally relevant parts and legally not relevant
ones. Furthermore, legally relevant parts
should be protected from any malicious
intrusion.

 For utility measuring instruments the
display of the total quantity supplied or
the displays from which the total
quantity supplied can be derived,
whole or partial reference to which is
the basis for payment, shall not be
able to be reset during use.

 The indication of any result shall be
clear and unambiguous and
accompanied by such marks and
inscriptions necessary to inform the
user of the significance of the result.

 Easy reading of the presented result
shall be permitted under normal
conditions of use.

 Additional indications may be shown
provided they cannot be confused with
the metrologically controlled
indications.

 A durable proof of the measurement
result and the information to identify
the transaction shall be available on
request at the time the measurement
is concluded.

Finally, there shall be no confusion between
data generated from legally relevant modules
and data from irrelevant ones, by marking
them distinguishable on the screen and on
prints. Additionally, relevant data, which is the
basis for payment, shall not be deleted or
resettable until the payment is conducted.

2.3 WELMEC

WELMEC is the European cooperation
responsible for legal metrology in the
European Union and the European Free Trade
Association (EFTA). Currently, representative

	 18. GMA/ITG-Fachtagung Sensoren und Messsysteme 2016	 482

DOI 10.5162/sensoren2016/6.3.4

national authorities from 37 countries are part
of the WELMEC Committee.

WELMEC Working Groups (WG) are
established by the WELMEC Committee for
the detailed discussion of issues. Currently,
there are eight active Working Groups and one
of them (WG7) is solely responsible for
software questions and issues the WELMEC
7.2 Software Guide (W7.2). As of this writing
its current version is WELMEC 7.2 Issue 5
[14], with Issue 6 near its completion. The
WELMEC 7.2 Software Guide provides
guidance to manufacturers and to notified
bodies, on how to construct or check secure
software for measuring instruments. Although it
is based on the MID and its addressed
instruments, its solutions are of general nature
and may be applied beyond. The document
states that by following this guide, a
compliance with the software-related
requirements contained in the MID can be
assumed.

The W7.2 defines six risk classes from A - F,
evaluating the need for software protection,
software examination and software conformity.
The risk classes are ascending in their demand
for security, meaning that risk class A
instruments do not need any security-
awareness mechanisms and risk class F
instruments need the highest. Specific groups
of measuring instruments are then assigned to
one risk class, e.g. petrol pumps are assigned
to risk class C.

Additionally, the W7.2 differentiates between
measuring instruments that are built solely for
the measuring purpose and the ones that run
universal software. The two classes are called
P and U. Normally one can say, if a measuring
instrument has an operating system installed, it
is a U type, else it is situated in the P class.
For both classes, four subclasses are defined
which deal with following IT functions:

 L: long-term storage of measurement
data,

 T: transmission of measurement data,
 D: software download,
 S: software separation.

This document focuses on the software
separation part (S) which is discussed in detail
in the following sections.

3. Simple Software Separation

As mentioned before the W7.2 formulates
three requirements for software separation.
These are:

S1: Realisation of software separation

contains all legally relevant software and
parameters that is clearly separated from other

S2: Mixed indication

software, which is not legally relevant, may
only be shown on a display or printout, if it
cannot be confused with the information that

S3: Protective software interface

relevant and legally non-relevant software
must be performed via a protective software
interface, which comprises the interactions and

Additionally the W7.2 also differentiates
between low-level and high-level separation.
These points are explained below and
analyzed for their conformity to S1-S3.

3.1 Low-Level Separation

According to W7.2, low-level separation means
that software separation is realized
independently from the operating system within
an application domain, i.e., at the programming
language level.

Fig. 1: Low-level separation according to W7.2

Figure 1 shows such a separation. Hereby, the
source code is modularized into separate files.
This is a first step to achieve software
separation and helps in the coding process
because a clean modularized environment
makes locating and emending bugs easier.
Still, this is not enough if one executable is
generated, as can be seen in Figure 2.

	 18. GMA/ITG-Fachtagung Sensoren und Messsysteme 2016	 483

DOI 10.5162/sensoren2016/6.3.4

Fig. 2: Software separation that still leads to one

executable

At execution time a single binary is running on
the device. In this binary legally relevant
functions are again mixed together with non-
legally ones, hence S1 and S3 is not satisfied.
An example where two separate binaries are
compiled can be seen in Figure 3.

Fig. 3: Software separation leading to two
executables

Hereby, the separation of the two executables
is achieved by copying the executables in
separate memory banks. The data transfer
between the executables can be managed
through shared libraries. S1 is being satisfied,
still S2 and S3 must be checked. Especially S3
states that the shared libraries must be
protective software interfaces, i.e. legally-non
relevant software is not allowed to effect legally
relevant one in an unwanted way. Hence the
libraries are legally relevant software.

3.2 High-Level Separation

High-level separation means that the software
modules to be separated are realized as
independent objects with the help of the
operating system. An example which is similar
to the last one is shown in Figure 4.

Fig. 4: Difference between statically linked in

libraries and dynamic ones

The different source code files generate
different executables. Here again, libraries are
the parts of code that are used by both
executables. If the libraries are statically linked
into the executables, the binaries are
independent of each other, and the operating
system makes sure that the applications are
isolated. For this purpose, the operating
system needs mechanisms to make isolation
possible, like the use of separate address
spaces for different processes. For general
purpose operating system like windows and
Linux this is the case. Still, many known bugs
generate vulnerabilities in these operating
systems that are used to subvert the isolation.
Hence, it is important to do a risk analysis of
the specific measuring instrument to check if
the needed security mechanisms are upheld
by the respective operating system.

If the libraries are dynamically linked into the
binaries, they represent shared code and need
to be checked accordingly to S3 as mentioned
before. These libraries can then be used for
communication purposes between legally
relevant and non-legally relevant software.

Fig. 5: Inter Process Communication (IPC)

controlled by the operating system

	 18. GMA/ITG-Fachtagung Sensoren und Messsysteme 2016	 484

DOI 10.5162/sensoren2016/6.3.4

Lastly, Figure 5 shows a completely controlled
communication by operating system
mechanisms. Here, the used libraries are
statically linked into the binaries, constructing
separate isolated processes. These processes
can than communicate through Inter-Process
Communication (IPC) with each other, which is
regulated by the operating system.
Nevertheless, one has to trust the operating
system, as mentioned before the level of trust
needed can be checked by a risk analysis.

4. Stronger Software Separation

4.1 Security Kernels

A security kernel in a system ensures that
subjects have access only to objects that are
given to them by a security policy. A common
way of expressing these requirements is given
by the acronym NEAT, which defines the
following criteria for security kernels:

 Nonbypassable: The safety concept of
the system cannot be bypassed.
Components cannot create
communication paths, different from
the determined ones to bypass the
safety concept.

 Evaluatable: The security architecture
is small and has a low level of
complexity, in order to make a formal
verification possible. The components
must be small and modular, to
facilitate verification.

 Always-invoked: The safety concept is
always active. Every access and
communication must be checked and
accepted by the security architecture
(the security architecture normally
verifies only the first access to an
object, all other requests are
forwarded without a recheck to speed
up the process).

 Tamper-proof: The system has a strict
access control management,
specifically handling the modification of
data or code. The security architecture
strictly controls which components can
modify the system to prevent
unauthorized changes.

A security kernel is not necessary an operating
system kernel. Rather, it refers to those
components that perform the functions of a
reference monitor within an operating system
kernel. If access to a sensitive object is
requested, the system first asks this reference
monitor for permission. The reference monitor
itself then checks the access rights by some
kind of policy table. Hereby, the objects can

be hardware, e.g. CPUs, memory segments,
hard-disk blocks; or software, e.g. processes
or files.

Usually general purpose operating systems
use a Discretionary Access Control (DAC)
model, in which the individual users are able to
decide who can have what access to their
documents. In systems were stronger security
is needed, the systems themselves should
have additional rules that decide what objects
can be accessed by whom, e.g. in a hospital,
the doctor should not be able to give the janitor
reading or writing rights to his patience
database. These systems should have so
called Mandatory Access Control (MAC)
models in place, for example the Bell-La
Padula [5] model or the Biba [3] model.

A well-known example of a security kernel is
SELinux [10], an implementation of the Flux
Advanced Security Kernel (FLASK) [11] for
Linux. SELinux replaces the normally used
Discretionary Access Control (DAC) by the
more restrictive one, the Mandatory Access
Control (MAC). In general, Flask utilizes a
security server to make access decisions and
object managers that enforce those decisions.
This separation of access control decision from
enforcement, allows the support of flexible
mandatory access control.

From a legal metrology point of view, a security
kernel, if correctly set up, fulfills all separation
requirements of W7.2: S1 (Realisation of
software separation), S2 (Mixed indication),
and S3 (Protective software interface).

4.2 Separation Kernels

Generally, operating system architectures are
subdivided into two main designs, the
monolithic kernel and the microkernel system
architecture. The main difference between
those two is that a monolithic kernel system is
working in privileged mode sharing a single
memory space with the system software, such
as file systems and complex device drivers
with direct access to the hardware. In former
years this was great for performance reasons,
because user applications are able to access
most services, e.g. I/O devices and TCP/IP
networking, with a simple and efficient system
call. The disadvantage of this approach is that
the system parts are not secured from each
other and one bug in a component can affect
all other components in the system.

In the microkernel design, the microkernel is
the only software executed at the most
privileged level. Hence in contrast to a
monolithic design, services are implemented in

	 18. GMA/ITG-Fachtagung Sensoren und Messsysteme 2016	 485

DOI 10.5162/sensoren2016/6.3.4

separate processes and secured against each
other. Hereby, stability is gained because, for
example, a crash in the network stack that
would have been fatal for a monolithic system
is now survivable. Even well-engineered code
can have several defects per thousand SLOC
[4], which leads to the conclusion that a bigger
system should have inherently more bugs than
a small system. For comparison, modern
microkernels have around 15K SLOC and less,
the monolithic kernel of Linux (version 3.6) at
least 300K SLOC to a maximum of 16M SLOC,
depending on the configuration.

A separation kernel [15] is a special
microkernel, which divides the system into
partitions - sometimes also called domains.
This software component ensures complete
separation of the partitions from each other,
both in time and space. Partitions can only
communicate with each other through strictly
controlled channels. The term separation
kernel originates from the field of embedded
systems, where isolation of individual
components often plays an important role.
Accordingly, the requirements for separation
kernels are very high. The ARINC653 [13]
specification defines requirements that need to
be fulfilled by operating systems, to be
approved in areas where functional safety
must be guaranteed. There are four
requirements for the operating systems, which
must be met by their separation kernel:

1. Temporal separation
2. Spatial separation
3. Information flow control
4. Fault-isolation

The term separation kernel is often used in

of Security / Safety (MILS) [1, 2]. Hereby, the
separation kernel represents the lowest layer
of the architecture. In the partitions, a
middleware layer is running as a connecting
plane to the applications. This is needed
because the provided interfaces of the
separation kernel are often very rudimentary
and provide only a minimum of functionality, to
keep the complexity in the kernel low.
Therefore, the middleware implements missing
functionality, often in the form of libraries to
offer applications a standardized interface (e.g.
POSIX). These libraries contain a variety of
functions such as memory management,
threading or just mathematical functions.
However, the middleware can also offer a
virtualization layer, which enables the partitions
to run operating systems with a wider range of
functions, for example, Linux or Windows.

4.3 Virtualization

With virtualization, standard operating systems
that offer great functionality, a familiar user
interface and many working drivers can be
used. Still, security is ensured due to the
encapsulation and modularization of the
software.

In [12], for example, a software reference
architecture for measuring instruments is
described, which is based on a microkernel
and virtualization. The microkernel runs on the
lowest level, under the actual operating
systems. These operating systems in turn, are
encapsulated into modules, so-called virtual
machine (VM). The operating systems can
continue to load their usual programs and
drivers, but are obligated to communicate via
the microkernel with each other and the
hardware. The system architecture is based on
a modular design that fulfils the requirements
of the Measuring Instruments Directive of the
European Union (MID) and the WELMEC 7.2
Software Guides (W7.2). These can be seen in
Figure 6 and are as follows:

 Displaying data (Secure GUI),
 Data protection (Key & Signature

Manager),
 Storing data (Storage Manager),
 executing downloads (Download

Manager),
 Transferring data (Connection

Manager),
 Internal data processing

(Communication Monitor).

Fig. 6: Communication between the individual
modules within the system architecture

Hence, the reference architecture ensures that
all legally relevant measurement functions can
be monitored safely. In addition, the
architecture separates non-legally relevant
software (N) and legally relevant software (L).
All calculations that fall under legal control are
carried out in the L-VM, everything else in the
N-VM. This strict separation ensures that
legally relevant software is not irregularly
affected.

4.4 Hardware Separation

	 18. GMA/ITG-Fachtagung Sensoren und Messsysteme 2016	 486

DOI 10.5162/sensoren2016/6.3.4

A more secure way than virtualization to
separate software is by directly using separate
hardware, e.g. two central processing units
(CPUs). One is solely devoted to calculate
legally relevant task and one is doing only non-
relevant calculations, as can be seen in Figure
7.

Fig. 7: Software separation through hardware

Again, the communication interface is legally
relevant and needs to be checked to fulfill S3,
if the two CPUs are communicating data to
each other or use the display together. This
method is the most expensive one, because it
needs additional hardware, which the other
methods do not need.

5. Conclusion

In this paper a concrete description of many
known methods to achieve software security
by separation was given. First, normal
methods were described, which the WELMEC
7.2 Software Guide calls low and high level
separation. Afterwards, more sophisticated
approaches were disscussed, like security and
separation kernels. The advancement beyond
the state of the art in this paper consists of
both the detailed description of these methods
and their validation for security aspects in the
context of existing documents that are used to
validate measuring instruments in legal
metrology.

References

[1] J. Alves-foss, W. Scott Harrison, P. Oman, and

C. Taylor. The mils architecture for high-
assurance embedded systems. Journal of
Embedded Systems, 2:239-247, 2006.

[2] R. Beckwith, W. Mark Vanfleet, and L. MacLaren.
High assurance security/safety for deeply
embedded, real-time systems. Systems
Conference . Citeseer, 2004.

[3] K. J. Biba. "Integrity Considerations for Secure
Computer Systems", MTR-3153, Mitre
Corporation, Juni 1975.

 [4] B. Chelf. Measuring Software Quality - A Study
of Open Source Software. Coverity, 2011.

[5] D. Elliott Bell, and Leonard J. LaPadula: Secure
Computer Systems: Mathematical Foundations.
MITRE Corporation, 1973

[6] N. Leffler, and F. Thiel. Im Geschäftsverkehr das
richtige Maß. In Schlaglichter der
Wirtschaftspolitik, Monatsbericht November,
2013.

[7] OIML D 31. General requirements for software
controlled measuring instruments, 2008.

[8] Official Journal of the European Union.
DIRECTIVE 2004/22/EC OF THE EUROPEAN
PARLIAMENT AND OF THE COUNCIL, March
2004.

[9] Official Journal of the European Union.
DIRECTIVE 2014/32/EU OF THE EUROPEAN
PARLIAMENT AND OF THE COUNCIL,
February 2014.

[10] online at
https://www.nsa.gov/research/selinux/index.sht
ml, accessed 26.02.2016

[11] online at
http://www.cs.utah.edu/flux/fluke/html/flask.html,
accessed 26.02.2016

[12] D. Peters, M. Peter , J.-P. Seifert, and F. Thiel:
A Secure System Architecture for Measuring
Instruments in Legal Metrology. Computers -
Open Access Journal 4(2), 61-86, 2015

 [13] Slawomir Samolej. Arinc specification 653
based real-time software engineering. E-
Informatica , 5(1):39-49, 2011.

[14] WELMEC European cooperation in legal
metrology. WELMEC 7.2 Issue 5 Software
Guide, March 2012.

[15] Y. ZHAO, M. Dianfu, and Y. Zhibin. A survey on
formal specification and verification of
separation kernels. Technical report, Tech. rep.,
National Key Laboratory of Software
Development Environment (NLSDE), Beihang
Univerisity, 2014.

	 18. GMA/ITG-Fachtagung Sensoren und Messsysteme 2016	 487

DOI 10.5162/sensoren2016/6.3.4

