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Summary:
This paper presents a new approach for indirect measurement methods (IMs) by using reconfigurable
non-intrusive sensors (NS) for the infield optimization of the reconfigurable integrated circuit with self-x
properties. The typical IMs approach of using the regression model for the device under test (DUT)
performance prediction is integrated with a metaheuristic optimization algorithm for the reconfigurable 
non-intrusive sensors. The novelty of this work comes from running the optimization algorithm on the 
NS by copying the same tuning knobs of the DUT, which allows for indirectly optimizing the DUT per-
formance without interrupting its operation. Additionally, the infield optimization will be based on low-
cost measurement of the embedded sensors. The achieved correlation performance metrics for the 
regression task is 90.13%. The DUT circuit is designed using XFAB 0.35 μm technology.

Keywords: Indirect measurements, Non-intrusive sensors, Infield optimization, Self-x properties, Me-
taheuristic optimization algorithm, Reconfigurable integrated circuit.

Background, Motivation and Objective
The integration of machine learning (ML) and 
artificial intelligence (AI) with other emerging 
technologies, such as cyber-physical systems
and edge computing, is initiating the most pro-
found transformation in the industrial domain
known as industry 4.0 [1,2]. The smart sensory 
electronics systems (SSES) perform the essen-
tial part of the data generation in this domain.
However, the performance of SSES is normally 
deviated with time [3]. To tackle the aging and 
process variations effects, analog ICs are 
commonly overdesigned, leading to more pow-
er and or larger chip area. Nevertheless, with 
the introduction of ML and AI, the reconfigura-
ble hardware structure of the SSES enables the 
self-X (self-healing, self-calibration, self-
learning, etc.) properties [4][5]. In order to sup-
port self-X properties, the analog ICs is de-
signed with controllable tuning knobs and per-
formance evaluation set-up [6] for chip perfor-
mance monitoring. The primary objective of this 
work is to replace and reduce the number of 
real expensive chip measurements with a sim-
ple and cost-effective indirect performance 
evaluation method (RIMs) for SSE

Description of the Proposed Methodology
The block diagram of the proposed methodolo-
gy is shown in Fig. 1. The reconfigurable non-
intrusive sensors (NS) are integrated in close 
proximity to the main design under test (DUT) 
to face the same operating conditions imposed 

on the DUT, that is, PVT variations (process, 
voltage, temperature). In this work, the recon-
figurability is introduced in the NS for the first 
time and the whole optimization is performed by 
utilizing the tuning knobs of NS rather than tun-
ing knobs of the DUT with the help of the pre-
trained regression model (RM). A wide tunable 
range low pass filter (LPF) is used to present 
this concept. The DUT and NS share similar TK 
values to reduce the search space complexity 
and ease the ML regression task. This feature 
also allows the online performance optimization
of the DUT without interrupting its operation.

Fig. 1. Block diagram of the proposed IMs method.

The TK values are copied to the main DUT after 
the completion of the optimization process.
Random forest regressor (RFR) is used to cre-
ate an accurate regression model between the
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NS outputs, TK, and DUT performance. The 
RFR helps to simplify the estimation of the DUT 
performance indirectly based on the low-cost 
measurement of the quasi-digital output fre-
quency of the NS. The flow diagram of the pro-
posed approach is depicted in Fig. 2. 

 
Fig. 2. Flow chart of the proposed IMs approach 

First, different TK values are shortlisted for the 
training phase from the optimization search 
space to minimize the training data set and 
evaluation time. In the next step, the output of 
the NS and performance of the DUT are simu-
lated and subjected to similar PVT conditions. 
80% of data set are randomly used for the train-
ing of the RFR while the residual 20% are se-
lected to assess its performance. During the 
testing phase, the particle swarm optimizer 
(PSO) determines the TK values which will be 
applied to the NS. The output response of the 
NS is provided as input to the pre-trained RFR 
along with the current TK values to indirectly 
predict the DUT performance. Based on the 
output response of the RFR the PSO decides 
the respective TK values for the next iteration. 

Results 
For this experiment, a fully differential fourth-
order tunable continuous-time active low pass 
filter based on the Sallen–Key structure with 
Butterworth approximation is used as a test 
vehicle [7]. The digitized MOS resistor is used 
as a TK of the filter to determine the cutoff fre-
quency. We used a total of 1000 estimators 
with mean squared error as a criterion for the 
RFR. The performance of the RFR is graphical-
ly illustrated Fig. 3. The adjusted R squared 
value (ARS) of the RFR is 90.13%. The details 
about the metaheuristic parameters of the PSO 
can be found in our previous work [8]. This ex-
periment is performed using 10 particles and 
100 iterations. The experiment is repeated five 
different times, and the averaged optimization 
results are summarized in Table 1. The maxi-

mum estimation error of the optimization result 
is roughly 9% for the 1 kHz but can be mini-
mized by increasing the training data set 
around this region. Our institute already submit-
ted the chip prototyping for fabrication to prove 
the concept practically with real measurements.  

 
Fig. 3. Scatter plot of the predicted and true values.  

Tab. 1. Optimization results of the DUT. 
 

DUT 
Characteristic Targetted Achieved 

3 dB cutt off 
frequency 

5 MHz 4.95 MHz 
1 MHz 1.03 MHz 

100 kHz 94.37 kHz 
10 kHz 9.56 kHz 
1 kHz 1.09 kHz 
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