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ABSTRACT — Linear Variable Differential Inductor (LVDI) probes are used for most precise roundness
and roughness measurements down to sub–nanometer. Even under rough conditions the LVDI guarantees
a good repeatability of the measurement. In this paper some widely overlooked sources of errors that–if
unavoidable–increase measurement uncertainty beyond the theoretical limit attainable are discussed and
the magnitude of their influence is detailed. Usually safely ignored influences like stochastic noise, heating
and elastic deformation can result in uncertainties of several nanometers.

I. Introduction

In the paper a range of parameters are discussed that can potentially lead to uncertainties in a highest
resolution displacement measurement system. This system is able to resolve – by averaging over several
measurements – in the sub–nanometer range. The ever increasing quality demand of machine components
and machines in industry has been the driving force behind research for more accurate measurement meth-
ods. Precision measurement systems that can achieve a displacement accuracy in the order of nanometers
are essential in the optical, semiconductor and nanotechnology industry and ultra–precise machining. Ca-
pacitive sensors and linear variable differential inductor (LVDI) can measure displacements down to the
sub–nanometer range [1] (see Figure 1). Alternatively, laser interferometers may be used for measuring
displacements with nanometer accuracy. However, those incurs high costs, require relatively large space
for installation and operation and demand for very well controlled environmental conditions [2].
In analyzing sensors and system behavior for very high resolution systems the number of parameters that
are influencing accuracy and resolution rapidly grows beyond the typical parameters like temperature, noise,
quantization effects, to name just a few. In systems that strive for sub nm–resolution even usually safely ig-
nored influences like static friction, dynamic friction, heating, elastic deformation, and many more can result
in uncertainties of several nanometers. Pretty much every conceivable, environmental parameter needs to
be analyzed for its possible influence. The purpose of this research is to clarify the influences of some of
the parameters in ultra–precision measurement.
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Fig. 1: The used LVDI and its principle sketch. In the sketch can be seen the coil with the center tab and
the push rod. The differential 5 V peak to peak voltage is applied to the connectors V+ and V−.

II. Thermal Noise Behavior of the Bridge Circuit

In this section the noise voltages which are generated from the resistive bridge components and disturbs
the diagonal voltage ud will be calculated. The resistive components are the RDC of the sensor, RB and
RS whose noise significantly influence the diagonal voltage ud of the reactive deflection bridge, thus the
measurement accuracy. The LVDI is a branch of a reactive deflection bridge which is supplied with two
differential sinusoidal voltages (see Figure 2). The resistor noise is well modeled by a Gaussian white
noise.
Its one–sided Power Density Spectrum (PSD) for a voltage and current source is given by:

Sn,v(ω) =
2

π
kTR, 0 ≤ ω ≤ B and Sn,i(ω) =

2kT

πR
, 0 ≤ ω ≤ B (1)

where k is the Boltzmann constant (k = 1.38 × 10−23Ws
K ), T the absolute temperature in Kelvin of the

components (T = 300 K), B the bandwidth in rad/s and R the ohmic resistance in ohm. The noise sources
are statistically independent, the power spectral density of the root mean square (r.m.s) current In,RS
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Fig. 2: The linear noise–free reactive deflection bridge for an inductive push–pull displacement sensor. The
two resistors labelled RS are necessary, according to the data sheet, to obtain the sensitivity of 76 V

Vm .

simply the sum of the power spectral densities of the noise currents. In a given bandwidth B the total r.m.s
current noise passing trough the resistor R′S = 2RS can be calculated by:

In,RS
=

√

√

√

√

∫ ω2

ω1

N
∑

i=1

Sn,idω (2)

where ω1 = 2πf1 and ω2 = 2πf2 the lower and upper angular frequencies of the passband. The electrical
parameters of the Sensor are C = 55 pF, L = 1.8mH and RDC = 332 Ω. These parameters were measured
by an HP 4194A impedance gain phase analyzer. The other bridge parameters are RB = 680 Ω and
RS = 6800 Ω. The frequency f2 = 160 kHz is the -3 dB frequency of a first order low pass, and has to
be multiplied with a correction factor π/2 to obtain the equivalent noise bandwidth for a first order low pass
filter. For a given bandwidth of B = 160 kHz, the noise voltage is Un,d = In,Rs2RS = 1.29 µV.
The bridge has a differential, 16 kHz, u1 = u2 = 5 V peak–to-peak sinusoidal voltage supply and the sensor
has a sensitivity of 76 V

V m with a resistance RS = 6.8 kΩ at its output (see Figure 2). Hence, the noise
voltage Un,d contributes to a measurement uncertainty of σe,n = ±2.4 nm.

III. Thermal Expansion

A. Thermal expansion due to Handling

Handling of the specimen of the measurement system influences the measurement system by the thermal
energy introduced and can affect the measurement result significantly. The operating person touching the
sensor or the measurement system will introduce thermal energy causing the measurement system to heat
up. Certainly, the exchange of energy will be very small but the effect to the measurement system can be
significantly.
To be able to estimate these influences an experiment was performed using an aluminium cylinder as model
of the mechanical stage. A Pt–100 RTD was attached (see Figure 3) and the temperature increase caused
by a mere touching for 30 s with one hand was recorded. Based on a temperature of 20◦C the increase
TT,cyl = 0.54 ◦C was determined and used to estimate any thermally induced changes in measurement
geometry. The thermal expansion coefficient of aluminium is assumed to be αal = 23 · 10−6 /K and the
linear dimension of the mechanics is assumed to be 250 mm resulting in a transient expansion of ∆hT,cyl =
7.44 µm of which only the transient expansion during the measurement cycle (60 s max.) will influence the
measurand.
This simple example shows that the thermal energy from an operating person can greatly influence the
measurement system and cause a transient expansion with magnitudes that are larger than commonly
thought.

B. Thermal Expansion due to Power Dissipation

As is be illustrated in Figure 1 a typical LVDI consists of a ferritic steel tube, push/pull rod, armature and
sensor coil with center tab. The power dissipation of the sensor contributes to a thermal expansion of allS E N S O R + T E S T C o n f e r e n c e s 2 0 1 1 � S E N S O R P r o c e e d i n g s 2 8 9



mechanical components [3]. The sensor coil is current–carrying and losses occur. The power dissipation
increases over time the temperature.Therefore, a thermal expansion occurs in the heated components.
This section shows a simple analytical approximation of the amount of thermal expansion uncertainties
compared to the results of a long term stability test. By using the first law of thermodynamics, the energy
balance of the sensor is

PL∆t = αCuS∆ϑ∆t+ cCum∆ϑ (3)

The solution of Equation 3 with respect to time t provides the temperature profile of the inductor and its
armature. The solution is given by the exponential function:

∆ϑ(t) = ∆ϑend

(

1− exp−
t
τ

)

(4)

where ∆ϑend = PL/(αCu · S) is the temperature increase of the sensor coil and armature and τ = cCu ·
m/(αCu · S) is the time constant. Furthermore, the variables αCu is the heat transfer coefficient of copper
(αCu = 12 W/(m2· K)), S the surface of the heat emitting sensor part, cCu the specific heat capacity of
copper (cCu = 385 Ws/(kg·K)), m the mass and ∆ϑ(t) the temperature difference.
For a power dissipation of PS,loss = 58 mW a coil mass m = 57 g and a surface S = 520 mm2 given a
thermal expansion coefficient of stainless steel αFe = 11 · 10−6 /K and a length of the armature lA = 25mm
a warm–up behavior as shown in Figure 4 has been determined. After a warming–up phase of 1800 s the
sensor is in the thermal equilibrium but still exhibits large random components of its expansion that are on
the order of 5–10 nm over a period of 100 s.
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Fig. 3: The cylinder for the handling simulation
having a diameter of dcyl = 80 mm, a height of
hcyl = 80 mm and a mass of mcyl = 1.1 kg.
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Fig. 4: A long term stability test with a typical
drift as seen in a precise measurement system.
The blue dashed line is the simulated curve and
the red solid line represents the experimental re-
sults.

IV. Elastic Deformation

Inevitable elastic deformations occur where a mechanical force is exerted on a specimen through a tactile
sensor such as an LVDI probe. These probes which are used for precise displacement, roundness and
roughness measurements react upon the specimen and the mechanical components of the probe such
as the push rod and the ball tip yield due to the usually small measurement force. Even contact forces
as low as Fcont = 0.1 N contribute significantly to the measurement uncertainty as will be shown. The
better the resolution of the system becomes the more the influence of the contact forces increase. The
measuring or contact force at zero displacement applied to the specimen due to the pre–stressed return
spring is (dependent on the measurand and displaying a randomly varying component) between 0.45 N
≤ Fcont ≤0.75 N. To analyze this problem thoroughly the force caused by the return spring stiffness cRS

and including the bearing friction is obtained by measuring the probe contact force at different probes
displacements. A sensitive scale measured the contact force by moving the sensor stepwise (in 100 µm
increments) to measurement positions between −1.2 mm to 1.5 mm about the zero point. In Figure 5 the
measurements are displayed and the spring stiffness cRS is obtained by determining the linear trend. The
same spring stiffness value cRS = 190 N/m is obtained for ascending (red line) and descending (blue line)
displacements. The varying component as measured by its standard deviation σm,RS = ±0.046 N.S E N S O R + T E S T C o n f e r e n c e s 2 0 1 1 � S E N S O R P r o c e e d i n g s 2 9 0
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Fig. 5: The probe contact force applied to the specimen due to the return spring vs. displacement.

A. Push–Rod Compression

As is visualized in Fig. 6 the mechanical arrangement of the push rod can be thought of as the return
spring in series with the stiffness of the push rod, where the measurand is taken at the mid–point position.
To estimate the influence on the measurand of the small but non–negligible random force component that
compresses the push rod the following is assumed. The static force is given for the mid–point position. The
pre–stressed return spring then exerts a force of approximately Fcont =0.45 N. The stainless steel push
rod is l0 = 20 mm long, has a cross section of Ap = 12.4 mm2 and a Youngs’s modulus of Ep = 210 GPa.
The axial static measurement force contributes to a ∆Xm,PR = 3.5 nm static compression of the push rod
at the operating point. The uncertainty of this force according to the section above leads to an additional
mechanical random compression of σm,PR = ±312 pm.

Äxm,PR

xÄ m,A

Return Spring Push Rod

cRS
cPR
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Fig. 6: A simple mechanically equivalent system of the sensor with its return spring and its push rod which
has been replaced by a coil spring with the stiffness cPR. The variables ∆xm,A and ∆xm,PR are the
armature and push–rod displacements.

The systematic error due to the sensor deflection can be calculated by

∆xm,A =

(

1−
cPR

cPR + cRS

)

∆xm,PR. (5)

where cPR = EPR · APR/l0 = 130 MN/m is the stiffness of the push rod, cRS = 190 N/m is the stiffness
of the return spring and the ∆xm,PR the mechanical displacement of the push rod. The systematic error
is the difference of ∆xm,PR = ∆xm,PR − ∆xm,A (see Figure 6). A displacement of ∆xm,PR = 1 nm
contributes to a systematic error of ∆xm,A = 1.5 fm. The error rise with the displacement and at maximum
measurement range (∆xm,PR = ±50 µm) the systematic error is ∆xm,A =73 pm. This error does not affect
the measurement result significantly, due to it being static.

B. Elastic Deformation of the Specimen

The ruby ball tip of the probe react upon the specimen. The small contact surface contributes to large
pressure despite the small forces acting. For the calculation of the elastic deformation, the specimen is
assumed flat or the specimen radius is considerably larger than the ruby ball radius R = 2.5 mm. Thus, the
specimen can be considered as an elastic half–space (see Figure 7). The mechanical displacement ∆xm,S

is related to the applied force Fcont by [7]:S E N S O R + T E S T C o n f e r e n c e s 2 0 1 1 � S E N S O R P r o c e e d i n g s 2 9 1



xm,S =
3

√

(

3

4

Fcont

E′
√
R

)2

with E′ =
ERES

ER + ES − ESν2R − ERν2S
(6)

and ES , ER are the Young’s modulus and νS , νR the Poisson’s ratios of the specimen and the ruby ball
tip, respectively. The measuring contact force at zero point (Fcont = 0.45 N) contributes to a displacement
of ∆xm,S = 163 nm. The Young’s modulus and Poisson’s ratio for the ruby are ER = 350 GPa and νR =
0.315 and for the steel specimen ES = 210 GPa and νS = 0.3. Movements about the operating point
also cause additional elastic deformations and displacements ∆xm,S(∆Fcont) = ∆xm,S(Fcont +∆Fcont) −
∆xm,S(∆Fcont) in dependence on the moving direction. Because of the finite specimen stiffness a certain
amount of deformation occurs. This error rises with the displacement and at maximum measurement range
(∆xm,PR = ±50 µm) the systematic error of the specimen deformation is ∆xm,S(∆Fcont) = ±2.3 nm.

C. Errors due to Bearing Play

If the specimen is in motion the probe tip will be deflected into the motion direction (see Figure 8). The
tangential friction force between the probe and specimen surface causes this deflection. Furthermore, the
bearing play and the finite push rod bending stiffness are responsible for the tangential deflection distance
(y–direction) of the push rod.
In this subsection will be discussed the error due to the bearing play, which admits a toppling of the push
rod. In the next subsection the error due to the bending is discussed.
Every bearing has a clearance even very precisely manufactured ones. In this case the clearance in ra-
dial direction causes measurement uncertainties. The axis direction or x–direction do not affect the mea-
surement result because of the pre–stressed return spring. The measurement uncertainty can easily be
calculated by

∆xm,B = l0

(

1− cos arcsin
∆y

l0

)

(7)

where ∆y is the defletion in y–direction of the push rod tip and l0 the length of the push rod between the
ball tip and the center among the two push rod bearings.
A ∆y = 1 µm deflection and a length l0 = 29 mm (see Figure 8) causes a error of ∆xm,B =17 pm in
x–direction.
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Fig. 7: An elastic sphere of radius R indents an
elastic half–space to depth xm,s
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Fig. 8: Push rod toppling due to the bearing play
and the tangential force FT causes a push rod
deflection in y–direction.

D. Error due to Push Rod Flex

As mentioned in the subsection above due to the tangential force FT (see Figure 8) the push rod has
a curved shape and is not completely straight. Therefore, an error occurs in x–direction. In Figure 9 is
illustrated the qualitative push rod behavior which is caused by the force FT .
As an example a very low tangential force FT = 0.1 N causes a deflection of yC = 100 nm at the push rod
tip C [6]. This result can be calculated with

∆yC =
FT l

3
a

EI

l2a
a2

(

1 +
la
a

)

1

3
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where a = 26.5mm is the distance between the two push rod bearings and la = 14mm the probe zero point
distance between the push rod top and the bearing B (see Figure 9)[6]. The measurement uncertainty due
to the push rod flex ∆xm,F can be calculated by

∆xm,FT
= l0

(

1− cos arcsin
∆yC
la

)

. (9)

A yC = 100 nm deflection causes an error of 0.4 pm in x–direction. Hence, this influence is very small and
does not influence significantly the precision.
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Fig. 9: Probe push rod shown as torsion free cantilever and a single force FT .

V. Summary and Conclusion

In this contribution some easily overlooked error sources in sub–nanometer measurement systems were
discussed and it was shown that each error term can in the adverse case be orders of magnitudes larger
than the typical resolution a user assumes from these systems. In section II. the thermal noise can achieve
an higher amount than the signal amplitude and yield to an poor SNR and contributes to an measurement
uncertainty of sigmae,n = ±2.4 nm. However, SNR improvement can be done by averaging. section III.
considers the influence of the handling and power dissipation. A simple experiment showed that the thermal
energy from an operating person can cause a transient expansion with magnitudes larger than thought. In
section IV. were static and systematic errors discussed due to the sensor contact force. Furthermore, the
systematic push rod error is ∆xmA = 73 pm and the specimen error is ∆xm,S = ±2.3 nm due to the
deformation. Additional, a random force σm,RS = 0.46 N due to the return spring and bering friction adds a
measurement uncertainty (mechanical random push rod compression σm,PR = 312 pm) to the systematic
errors.
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